

NovaLCT

LED Configuration Tool for Multimedia Player

User Manual

Contents

Contents	
1 Software Introduction	1
2 Software Installation	2
3 Device Connection	⊿
4 User Login	5
5 Screen Configuration	
5.1 Load Configuration Files of Common Screens	
5.2 Configure a Common Screen Manually	
5.2.1 Step 1 Light a Screen	
5.2.2 Step 2 Connect Screen	
5.2.3 Step 3 (Optional) Save Configuration Files	25
5.3 Set Redundancy	27
5.4 Set Performance Parameters	29
5.5 Set Module Flash Parameters	36
6 Brightness and Chroma Adjustment	38
6.1 Calibration	38
6.1.1 Set Online Calibration Parameters	38
6.1.2 Get Average Coefficients	39
6.1.3 Manage Calibration Coefficients	
6.1.4 Manage Double Calibration Coefficients	
6.1.5 Set Thermal Compensation	
6.2 Adjust Brightness	
6.3 Correct Brighter Pixels.	
6.4 Set Advanced Color	
6.5 Adjust Screen Effect	
6.6 Set Image Booster Engine.	
6.7 Batch Check Calibration Effects	
7 Screen Monitoring	
7.1 Register Screens with VNNOX Care	
7.1.1 Register Online Screens	
7.1.2 Register Offline Screens	
7.3 Configure Module Monitoring	
8 Screen Management	
8.1 Multi-function Card Management	
8.2 Receiving Card Relay	
8.4 Module ID Settings	
•	
9 Screen Maintenance	
9.1 Firmware Program Update	
9.2 LED Error Detection 9.3 Reset Run Time	
9.4 Bit Error Detection	
10 Plug-in	
10.1 Test Tool	
10.2 Calculator	
10.3 External Program	
11 Software Settings	
11.1 Configuration Information Management	
www.novastar.tech	E i

11.2 Set Main Window Starting Position	96
11.3 Configure the Save Function	97
11.4 Cloud Server Configuration	98
11.5 Change UI Language	98
11.6 Obtain Help Information	99
11.7 Update Software	99
11.8 Export Log	100
12 Troubleshooting	
12.1 Installation Problems	102
12.1.1 Failed to install NovaLCT of earlier versions	102
12.1.2 .NET Framework is missing	102
12.1.3 "DeleteFile failed" error	102
12.1.4 Prompts to run DPinst.exe	103
12.2 Other Problems	104
12.2.1 "No Screen" displayed in NovaLCT	104
12.2.2 Permission error	104
12.2.3 Failed to connect colorimeter	107
12.2.4 No available server for VNNOX Care	108
13 FAQs	109
13.1 How do Liset the proxy when Noval CT needs to access WAN network?	109

1 Software Introduction

The LED display control systems are categorized into synchronous control system and asynchronous control system. In synchronous control system, the images are played and controlled on the screen synchronously with the video source (such as on PC or camera). In asynchronous control system, they are played and controlled asynchronously. The program is pre-stored on the local playback device and then played according to the playback schedule.

No matter in which control system, the application scenario requires a piece of supporting software to configure the control system. Based on the needs of different users, NovaStar has designed and developed an LED screen configuration tool — NovaLCT.

As a basic screen configuration tool running on Windows, NovaLCT has the following features.

Easy to install

The latest installation package can be downloaded from NovaStar official website www.novastar.tech at any time and it is quick and easy to install.

Practical functions

A lot of commonly used functions are provided, such as screen configuration, screen monitoring, redundancy settings, brightness adjustment, multi-batch adjustment, multifunction card management and other configuration functions. Thanks to these functions, the screen can present optimal display effect and is easy to manage and maintain.

Wide scope of applications

NovaLCT can be used to configure NovaStar synchronous control system products and multimedia players of asynchronous control system. It meets different needs of screen manufacturers, contractors, distributors, rental application clients, end users and technical support engineers.

Efficient configuration

After the PC and control system product are connected, users can perform any operations with the PC. NovaLCT displays the corresponding functions and parameters according to the different hardware models and programs. During configuration, various kinds of configuration files can be used to complete operations quickly. If the configuration information is saved to the hardware, it will not be lost even after the hardware is powered off.

2 Software Installation

Obtaining Software

Visit www.novastar.tech and choose **DOWNLOADS** > **Software**. In the NovaLCT area, download the needed version of software installation package.

Figure 2-1 Obtaining software

Prerequisites

Before installing NovaLCT, prepare a PC that meets the following configuration requirements and disable any antivirus software.

- Minimum requirements:
 - Operating System: Windows 7 (32-bit)
 - CPU: 5th Generation Intel i3 processor
 - RAM: 4 GB
- Recommended configuration:
 - Operating System: Windows 10 (64-bit) or above
 - Processor: 10th Generation Intel i5 processor or above
 - RAM: 8 GB or above

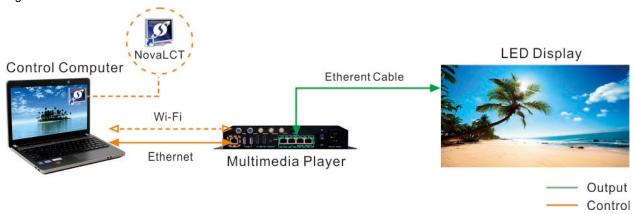
Installing Software

Unzip the installation package, run the .exe file and follow the setup wizard to complete the installation. If a firewall prompt appears, choose to allow the installation.

If the PC does not have the serial port driver program or the program version is earlier, the NovaLCT installation program will automatically install or update the program.

Verifying Installation

If the installation is successful, the shortcut appears on the desktop, and and icons appear on the taskbar.



3 Device Connection

The PC with NovaLCT installed sends the control commands, parameters, and configuration files to the multimedia players via Ethernet cable or Wi-Fi. Figure 3-1 and Figure 3-2 use the TB6 Taurus series multimedia player as an example to show the typical connections.

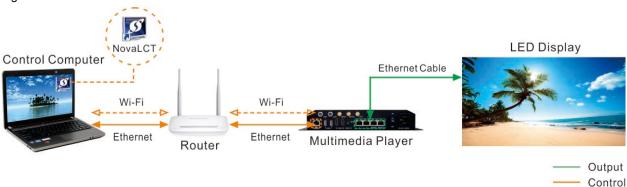
Direct Connection via Ethernet Cable and Wi-Fi

Figure 3-1 Direct connection

Direction connection via Ethernet cable

The control computer is directly connected to the multimedia player via Ethernet cable.

This method requires that DHCP must be enabled on the multimedia player and you must choose **Plug-in > DHCP Service** in NovaLCT, select the IP address of the PC and turn on the **DHCP Service** switch.


Direction connection via Wi-Fi

The control computer is directly connected to the multimedia player via Wi-Fi AP.

When the multimedia player has built-in Wi-Fi AP, you can use this method without the need for configuration.

Wired and Wireless LAN Connection

Figure 3-2 LAN connection

Wired LAN connection

The control computer and multimedia player are connected to the same wired LAN via Ethernet cable. If this method is used, configuration is not required.

Wireless LAN connection

The control computer and multimedia player are connected to the same wireless LAN via Wi-Fi.

This method is available when the multimedia player supports Wi-Fi Sta. The DHCP of the multimedia player must be enabled. You must log in to the multimedia player with the configuration software (such as ViPlex) and connect the player to the Wi-Fi AP of the router on the network configuration page.

4 User Login

Users must log in to the multimedia player first and then configure the player.

Operating Procedure

Step 1 Open NovaLCT.

If the software is not the latest version, an **Online Update** dialog box will pop up. You can click **Update** to update the software.

Step 2 On the menu bar, choose User > Media Player Login.

Figure 4-1 Main window (Not logged in)

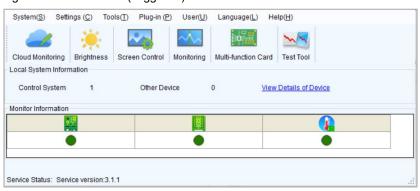
Step 3 In the **Terminal List** dialog box, click **Refresh**.

Figure 4-2 Terminal list

Step 4 Select a multimedia player from the list and click Connect System.

If the terminal and NovaLCT are not on the same network segment but they can be pinged, click **n** next to **Refresh**, select **Specify IP**, enter an IP address and click **Search**.

Figure 4-3 Selecting a terminal



Step 5 Enter the user name and password, and then click **OK**.

For example, the login user name of Taurus series multimedia players is "admin", and the default password can be found on the device's SSID label.

After successful connection, the NovaLCT main window displays the multimedia player quantity and monitoring information, as shown in Figure 4-4.

Figure 4-4 Main window (Logged in)

Other Operations

View Details of Device

Click View Details of Device to view the communication port, device name, device quantity and SN.

Reconnect multimedia player

Choose System > Reconnect.

Log out

Choose User > Logout.

5 Screen Configuration

Notes

NovaLCT currently only supports configuring regular screens. Irregular screens are not supported.

5.1 Load Configuration Files of Common Screens

Applications

Load a cloud or local configuration file to finish screen configuration quickly.

Applicable Products

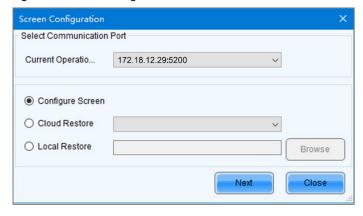
All receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

Prerequisites

- Load a cloud configuration file: The control computer is connected to the Internet.
- Load a local configuration file: The system configuration file (.scfg and .zip) is prepared.

Related Information

- The information in the cloud configuration file and local .zip file can be viewed in NovaLCT, but cannot be modified before the information is sent to the hardware.
- The information in the local .scfg file can be viewed and modified in NovaLCT before the information is sent to the hardware.


Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

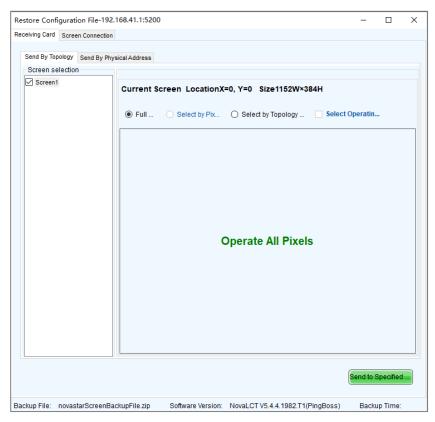

Step 2 Click Screen Configuration or choose **Settings** > **Screen Configuration** from the menu bar. to open the dialog box shown in Figure 5-1.

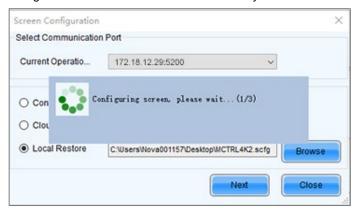
Figure 5-1 Screen configuration

Step 3 Perform any of the following operations as needed to load a configuration file.

- Load from cloud platform
 - a. Select Cloud Restore and select a node from the drop-down list.
 - b. Click **Next** to open the **Restore Configuration File** dialog box.

c. Select a tab as needed and send the configuration file to the hardware.

Receiving Card: Select Send By Topology or Send By Physical Address, set the related parameters, and click Send to Specified RV Cards to send the receiving card configuration file to the hardware. When you have selected Select by Topology or List, if it is not convenient to select an area with the software, you can select Select Operating Area on Screen to select the area on the display window.


Screen Connection: Click Send to HW to send the screen connection file to the hardware.

d. In the displayed dialog box, click Save to HW or Don't Save to HW.

Load from local PC

- a. Select Local Restore.
- b. Click **Browse**, select a configuration file, and click **Open**.
- c. Click Next.

For the .zip local configuration file, see the figures and steps in the Load from cloud platform section. For the .scfg local configuration file, the loading progress will be displayed. After the file is loaded, the dialog box shown below is closed automatically.

5.2 Configure a Common Screen Manually

For a common screen, set the input source, light the screen and connect the screen in order to complete the screen configuration.

Note

The screen configuration page in NovaLCT varies depending on the functions supported by the receiving card.

5.2.1 Step 1 Light a Screen

5.2.1.1 Configuration through RCFG

Note

In the **Receiving Card** tab of **Screen Configuration**, you can click **Load from Cloud** (VNNOX Care) or **Import** to load a receiving card configuration file (.rcfgx/.rcfg) and quickly up light up the screen. This section outlines the steps needed for manual configuration.

When loading from the cloud, you can quickly find the configuration file by selecting the manufacturer and entering the unique module ID, or by selecting the manufacturer and entering the configuration file name. If the firmware version of the receiving card does not match the configuration file, you may choose whether to upgrade the firmware.

For the loaded configuration file, the current receiving card version information (if the receiving card is connected) and the version of the software used when configuring the file are displayed at the bottom left of the **Receiving Card** tab page.

5.2.1.1.1 Light Module

Applications

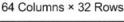
Set the receiving card parameters to light a new module.

Applicable Products

For receiving cards that support .rcfgx or .rcfg files

Prerequisites

The receiving card firmware supports the module chip.


Related Information

The module specifications are provided when the module is shipped. Users can also obtain the specifications from the driver chip, decoding chip and pin definition on the module.

For example, the following information can be obtained from the module shown in Figure 5-2.

- Driver chip: 24 SUM2016GAS2 chips
- Data type: 2 groups of parallel RGB data
- Module type: Regular module
- Pixel quantity: 64 columns × 32 rows
- Decoding chip: 2 SUM74HC138 chips

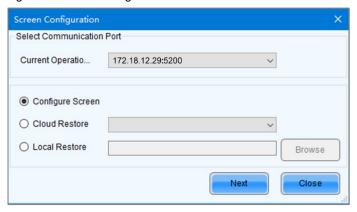
Figure 5-2 Module example

Driver Chip Decoding Chip

Pin Definition

Both regular and irregular modules are rectangular. If the module column quantity can be divided by 16 without remainder, the module is a regular one.

An irregular module has any of the following features:


• Some output pins of the driver chip are not used.

- The numbers of pixel rows or columns driven by each data group are different.
- The data groups do not drive the pixel rows or columns in order.

Operating Procedure

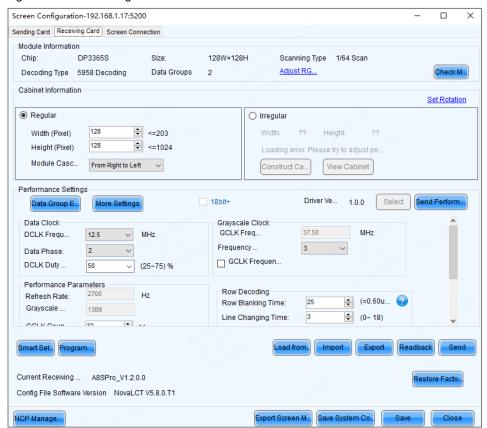
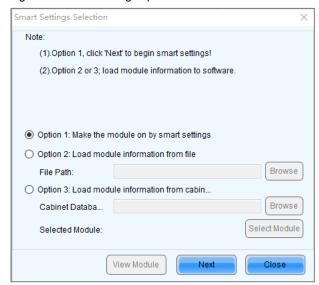

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 Click screen Configuration or choose Settings > Screen Configuration from the menu bar.
- Step 3 On the pop-up dialog box, select a communication port and choose Configure Screen. Then, click Next.

Figure 5-3 Screen configuration method

Step 4 On the Screen Configuration page, click the Receiving Card tab.


Figure 5-4 Screen configuration

- Step 5 Click Smart Settings.
- Step 6 Select option 1 and click Next.
 - Option 1: Enter smart settings.
 - Option 2: Load a module configuration file to quickly configure the module.

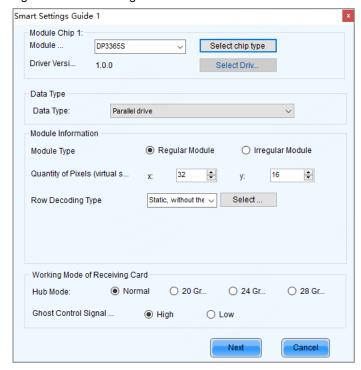

Option 3: Load the module configuration file in the cabinet database to quickly configure the module.
 After the configuration file is loaded, click Send.

Figure 5-5 Smart settings options

Step 7 On the Smart Settings Guide 1 page, set the parameters and click Next.

Figure 5-6 Smart Settings Guide 1

- Module Chip: Select the type of module driver chip. You can click Select chip type to open the chip table and select the desired chip. If the table does not have the type of chip you want, select Common Chip.
- Driver Version: Select the version of the receiving card's driver program. If the receiving card supports V1.0.0 driver program, click on Select Driver Version and select 1.0.0. If the receiving card supports V2.0.0 driver program, click on Select Driver Version and select 2.0.0.
- Data Type: Select the data type of the module. Parallel data indicates that the data of the RGB three colors is transmitted parallelly, but serial data indicates that the data of the RGB three colors is transmitted serially.
- Module Type: Select the module type. Module type includes regular and irregular modules.
- Number of Driver Chips for One Scan and One Color: This parameter is available when irregular module is selected. It is calculated by the following formula.
 - Number of driver chips for one scan and one color = Number of driver chips / Number of data groups / Number of colors
- Quantity of Pixels: Set the quantity of pixel columns and rows on the module.

- Row Decoding Type: Select the row decoding type of the module. You can click Select a decoding type to open
 the decoding type table and select the desired type. When the Parity Scan option is displayed, if only the odd or
 even output of the decoding chip is used, please select this option.
- Hub Mode: Use the default value.
- Ghost Control Signal Polarity: Use the default value.
- Step 8 On the Smart Settings Guide 2 page, select one option based on the current display on the module and click Next.

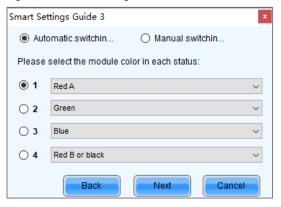
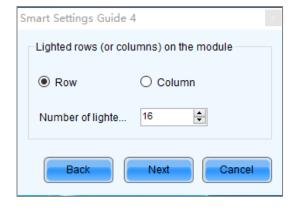

When you are viewing the display on the module, view the first module loaded by the first receiving card connected to the first Ethernet port.

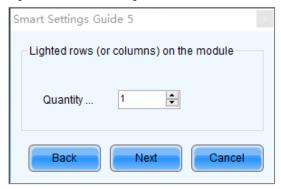
Figure 5-7 Smart Settings Guide 2

Step 9 On the **Smart Settings Guide 3** page, select the module display color switching mode and check whether the current module display color is the same as the selected color.


Figure 5-8 Smart Settings Guide 3

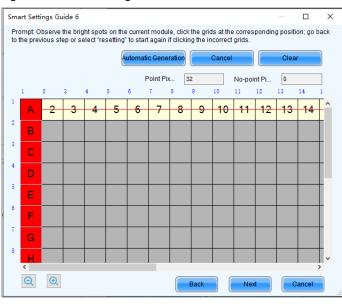


- If they are the same, click Next to go to Step 10.
- If they are different, select a color corresponding to the module display color from the drop-down list to make them
 the same.
- Step 10 On the **Smart Settings Guide 4** page, set the parameters based on the number of lighted rows (or columns) on the module and click **Next**.


Figure 5-9 Smart Settings Guide 4

Step 11 On the **Smart Settings Guide 5** page, set the parameters based on the number of lighted rows (or columns) on the module and click **Next**.

Figure 5-10 Smart Settings Guide 5



Step 12 On the **Smart Settings Guide 6** page, view the flashing pixel in the first row on the module and click the corresponding cell in the grid to draw the pixel position.

Generally, you only need to draw pixel position for the first row of pixels. If the flashing pixels are on the other row or column, click the corresponding cells in the grid.

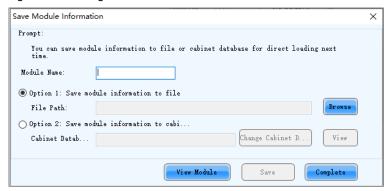
- Automatic Generation: Complete pixel position drawing for the first row of pixels quickly.
- Cancel: Clear the last pixel position drawing.
- Clear: Clear all the pixel position drawing.
- Lighted Pixels: Display the total number of lighted pixels on the current module.
- Unlighted Pixels: For regular modules, the value of this parameter is always 0. For irregular modules, a No corresponding LED button is added to the page shown in Figure 5-11. When a pixel cannot be lighted during pixel position drawing, you can click No corresponding LED and the number of Unlighted Pixels increases by 1.
- Zoom out the grid.
- Zoom in the grid.

Figure 5-11 Smart Settings Guide 6

Step 13 View the flashing pixel in the first column on the module and click the corresponding cell in the grid to draw the pixel position (You can also use the keyboard arrow key to quickly draw the position), and click **OK** after the drawing is done.

Generally, you only need to draw pixel position for the first column of pixels. If the flashing pixels are on the other row or column, click the corresponding cells in the grid.

Step 14 Click Next and click OK.


Step 15 (Optional) Enter a module name and save the module configuration as a file or save the module configuration to the cabinet database.

PAGE

In the future, you can load the module configuration file to quickly light the modules with the same specifications.

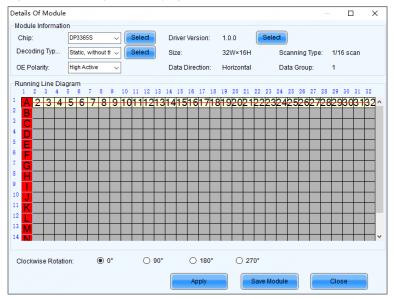

- Browse: Select the path to save the module configuration file.
- Change Cabinet Database: Open or create a cabinet database.
- View: View the module configuration file saved in the cabinet database.

Figure 5-12 Saving module information

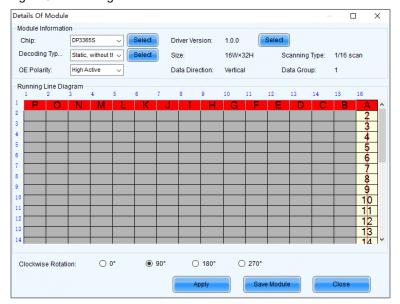

Step 16 On the **Save Module Information** page, click **View Module** to review the detailed configuration of the current module. The displayed parameters are those configured through the smart settings guide. If necessary, you can modify the relevant parameter configurations.

Figure 5-13 Viewing and modifying module information

Step 17 In the **Clockwise Rotation** area, set the module rotation angle, choosing from 0°, 90°, 180°, or 270°. After setting, the schematic diagram of the module wiring on the interface will change accordingly to reflect the actual configuration. For example, setting a 90° rotation will alter the wiring schematic from the above figure to the following:

Figure 5-14 Rotating module

Step 18 Click Close to exit the Details of Module page, then click Complete.

Note

On the Receiving Card tab page, you can also perform the following operations.

- In the Module Information area, click to view the detailed module information. On the Details of Module page, click Save Module to save the module configuration as a file. Click Check Module in the Module Information area to view the detailed module information and modify relevant parameters if necessary. You can also set the module rotation, as described in Step 17 above. Additionally, you can click Save Module to save the module configuration as a file.
- Click the Select button next to Driver Version to select the driver version. If the receiving card supports V1.0.0 driver program, select 1.0.0. If the receiving card supports V2.0.0 driver program, select 2.0.0.
- Click Restore Factory settings to reset the configuration information of all or specified receiving cards to factory settings.
- Type "admin" to show the Save to factory area button. This button is used to save some parameters to
 the factory area before delivering the cabinets to users. This function is supported only by some receiving
 cards.

5.2.1.1.2 Set Cabinet

Applications

Set the size of the cabinet loaded by the current receiving card and the cascading direction of the modules in the cabinet.

Applicable Products

For receiving cards that support .rcfgx or .rcfg files

Prerequisites

- A module is lighted. For details, see 5.2.1.1.1 Light Module.
- If the cabinet is irregular, the cabinet database file (.mcl) or module configuration file (.module) is prepared.

Related Information

If a cabinet is rectangle and the specifications of all the modules are the same, the cabinet is a regular cabinet, otherwise it is an irregular cabinet. For an irregular cabinet, the configuration file must be used to construct the cabinet.

Operating Procedure

- Step 1 On the Screen Configuration page, click the Receiving Card tab.
- Step 2 In the Cabinet Information area, perform the corresponding operations below based on the cabinet type.

Figure 5-15 Cabinet information

Configure regular cabinet

Select Regular, set the cabinet width and height, and set the cascading direction of modules.

Configure irregular cabinet

- a. If you need to configure row extraction position, select **Big Control Mode**. If **Big Control Mode** is not displayed or you do not need to configure row extraction position, skip this step.
- b. Select Irregular, click Construct Cabinet to open the dialog box shown in Figure 5-16.
- c. If you have a cabinet configuration file (.mcl/.cabinet), click **Load** to configure the cabinet quickly. If you do not have the file, preform the subsequent operations to manually configure the cabinet.
- d. Set **Data Groups of Cabinet** according to the number of data groups actually used by the cabinet and click **Set**
- e. Click From Cabinet Database or From File to load modules.

When loading modules from files, you can set the numbers of module rows and columns. The loaded modules support the Ctrl+C, Ctrl+V, Ctrl+A, Delete, Ctrl+Z and Ctrl+Y keyboard shortcuts.

f. Adjust the positions of modules to let them form a cabinet whose size is consistent with the actual cabinet size.

You can adjust the module positions by directly dragging the modules or using the functional buttons in the **Module Alignment** and **Module Spacing** areas. Currently, the position adjustment operations cannot be undone. You can also adjust the display scale of the module to zoom in, zoom out, or fit automatically as needed in the **Zoom** section.

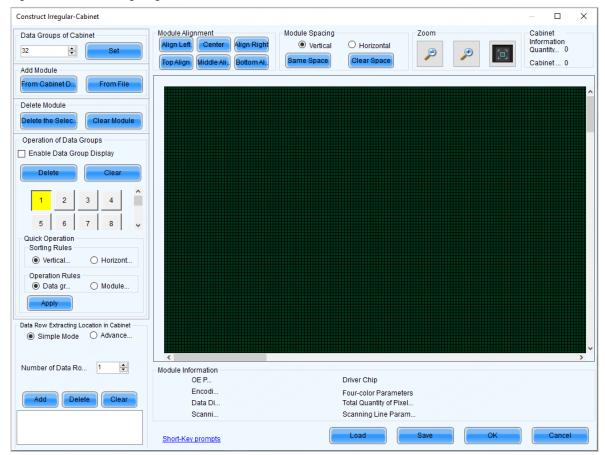
g. Select the data group one by one and double click the corresponding modules to connect them.

When selecting the data group, you can click the **A** key or **D** key on the keyboard to switch data groups.

To display the test pattern by data groups, check the option Enable Data Group Display.

After you double click the module, the module number is displayed. For example, (2, 2) indicates the module is the second module of the second data group. Right clicking the module can cancel the connection.

Functions in the **Quick Operation** area allow you to quickly number the selected modules and you do not need to select data group first. The module positions after numbering may change and you can adjust them if necessary.


h. Select **Simple Mode** or **Advanced** and configure one or more row extraction positions. If **Big Control Mode** is not selected on the **Receiving Card** tab page, skip this step.

Simple Mode: Set the row extraction position of cabinet and click **Add**. For example, if you set the parameter to **2**, the second row in the cabinet will be extracted during row extraction and the second column will be extracted during column extraction.

Advanced: Set the row extraction position of module and click **Add**. For example, if you set the three parameters to **2**, the second row in the second cascaded module connected to the second data group will be extracted during row extraction and the second column in the second cascaded module connected to the second data group will be extracted during column extraction.

- i. After the configurations are done, click **OK**. If necessary, click **Save** to save the cabinet configuration information to the cabinet database or save the information as a file.
- j. (Optional) Click View Cabinet to view the cabinet information.

Figure 5-16 Constructing irregular cabinet

Step 3 If cabinet rotation is required, click **Set Rotation** and select the rotation angle. If it is not required, skip this step.

After cabinet rotation is set, all the input sources will be rotated to display according to the set angle.

Figure 5-17 Constructing irregular cabinet

- Step 4 After the settings are done, click **Send**. In the displayed dialog box, select **All Receiving Card** or specify receiving cards, and click **Send**.
 - All Receiving Card: Send the receiving card configuration information to all the receiving cards loaded by the
 current multimedia player. If you select Reset the Starting Coordinate of Receiving Card, the starting
 coordinates of all the receiving cards will be reset to (0, 0). As a result, all the receiving cards display the top-left
 image of the input source.
 - Specify Receiving Card: Send the receiving card configuration information to the specified receiving cards by topology or by physical address.

Figure 5-18 Sending parameters to receiving card

- Step 5 After successful sending, click **OK** to close the prompt box. The screen is now lighted.
- Step 6 (Optional) Click Export to export the configuration information as a receiving card configuration file (.rcfgx).

5.2.1.2 Configuration through NCP

Applications

Configure the cabinet by loading NCP files. Additionally, you can read the cabinet information, restore the NCP, and set the cabinet rotation and indicator status.

Applicable Products

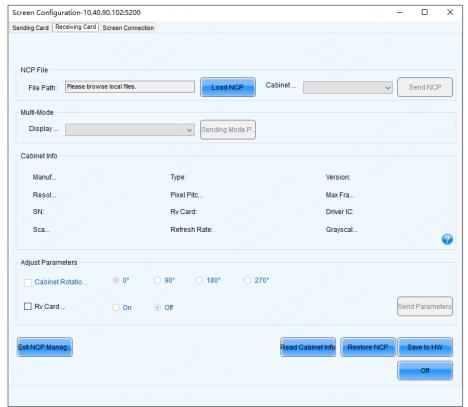
For receiving cards that support NCP files

Prerequisites

- To load NCP files, ensure you have prepared the .ncp file and that its applicable model matches the current receiving card in use.
- To restore NCP files, confirm that the receiving card model is A8s Pro and that the firmware version is V1.2.0.0 or higher.

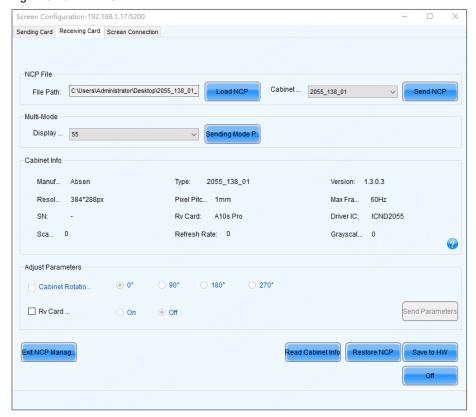
Related Information

None


Operating Procedure

Step 1 On the Screen Configuration page, click the Receiving Card tab for NCP Management.

Notes

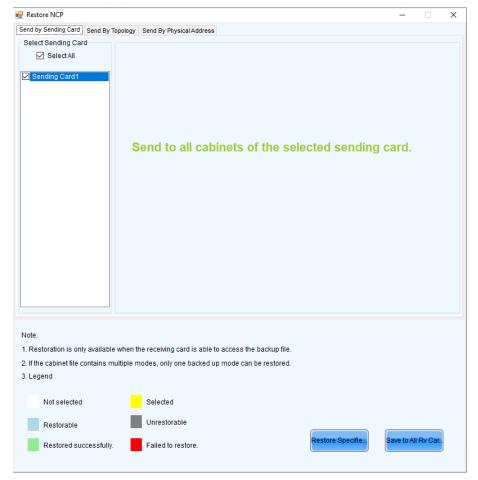

If the **Receiving Card** tab defaults to the .rcfgx/.rcfg configuration interface, click **NCP Management** to enter the NCP management interface.


- Step 2 Click Load NCP.
- Step 3 On the pop-up window, click **Browse** to choose an .ncp file.

Figure 5-20 Load NCP

- Step 4 Send the cabinet file and display mode parameters.
 - Select a cabinet file from the drop-down list and then click Send NCP.
 - Select a display mode from the drop-down list and then click Send Mode Parameters.
- Step 5 On the pop-up window, select the target receiving cards and click **Send**.
 - All Receiving Card: Send the receiving card configuration information to all the receiving cards loaded by the
 current sending card. If you select Reset the Starting Coordinate of Receiving Card, the starting coordinates of
 all the receiving cards will be reset to (0, 0). As a result, all the receiving cards display the top-left image of the
 input source.
 - Specified Receiving Card: Send the receiving card configuration information to the specified cards by sending card, by topology, or by physical address.
- Step 6 Click Save to HW.
- Step 7 Do the following as required.
 - Read cabinet information

Click Read Cabinet Info, set the receiving card address on the pop-up window, and then click OK.



- Restore NCP
 - a. Click Restore NCP.
 - b. On the pop-up window, select the receiving cards you want to restore.

On the **Send by Topology** tab, you can click **Check Backup Files** to check if there is a backup file in the receiving card factory area.

PAGE

- c. Click Restore Specified Rv Cards to restore the backup file in the factory area to DDR.
- d. Click Save to All Rv Cards.

Set cabinet rotation

Select Cabinet Rotation, set the rotation angle, and then click Send Parameters.

Set receiving card indicator

Select Rv Card Indicator, choose between Enable or Disable, and then click Send Parameters.

5.2.2 Step 2 Connect Screen

Applications

Connect the receiving cards logically. Generally, one receiving card loads one cabinet. Therefore, this function is also called connecting cabinets.

Applicable Products

All multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

Prerequisites

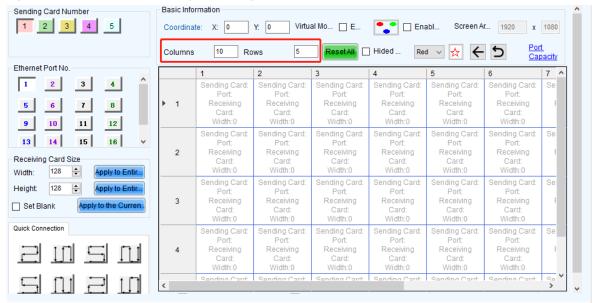
None

Related Information

In NovaLCT, you can configure up to 20 screens.

To configure a complex screen efficiently, you are advised to configure a standard screen first and then configure the complex screen based on the standard screen.

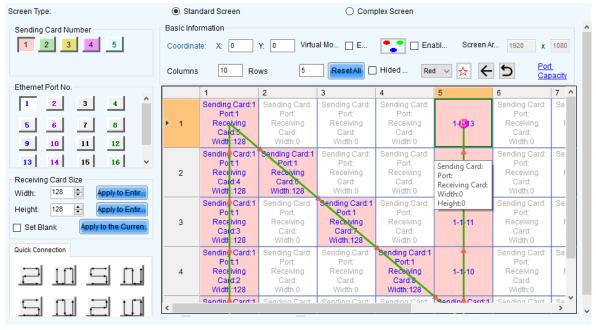
Operating Procedure


Step 1 On the Screen Configuration page, click the Screen Connection tab.

Step 2 Set the screen quantity and click **Configure**.

If the multiple output ports of the multimedia player load the different areas of the same screen, set the screen quantity to 1. If the multiple output ports of the multimedia player load different screens, set the screen quantity to the number of screens loaded.

Step 3 On the **Standard Screen** page, set the column and row quantity of receiving cards. For example, set them to 10 columns and 5 rows respectively, as shown in Figure 5-21.

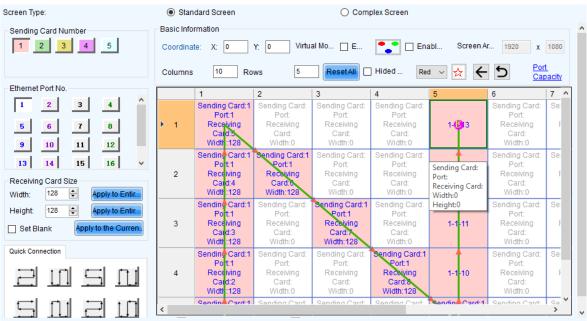

Figure 5-21 Column and row quantity of receiving cards

- Step 4 Choose an output port.
- Step 5 Set the receiving card size (loading capacity) and connection. For example, Figure 5-22 illustrates setting of the receiving cards loaded by output port 1.
 - Custom connection: In the table, click or drag the mouse.
 - Quick connection: Click a connection pattern and drag the mouse to select an area in the table.

During connection, the loading capacity of all the receiving cards is the value you set by default. If necessary, you can change the width and height of the loading capacity on the left.

Figure 5-22 Receiving card connection and size

 Apply to Entire Column: Apply the loading capacity width of the selected receiving card to all the receiving cards in the same column.


- Apply to Entire Row: Apply the loading capacity height of the selected receiving card to all the receiving cards in the same row.
- Apply to the Current Port: Apply the current loading capacity width and height to all the receiving cards connected
 to the current output port.
- Reset All: Reset all the receiving card connections and blanks.
- Hided Mapping Line: Hide the receiving card mapping line (namely the connections).
- Mark the receiving card.
- E: Return to the previous step of connection.
- D: Clear all the connections of receiving cards connected to the current output port.
- Zoom: Zoom in or out the receiving card interface in the middle. When the interface is large enough, cabinet related information is displayed.
- Port Capacity: View the usage rate of Ethernet ports.
- Step 6 Set the specified receiving cards blank and set the blank size, as shown in the example in Figure 5-23. If you do not need to set blank, skip this step.

Click a receiving card and select **Set Blank** to leave the position of that receiving card blank. Continue clicking or dragging the mouse on the empty cabinets to set blank on the other positions.

The receiving cards that are left blank do not load the screen to display the image, which helps to realize configuration of complex screen.

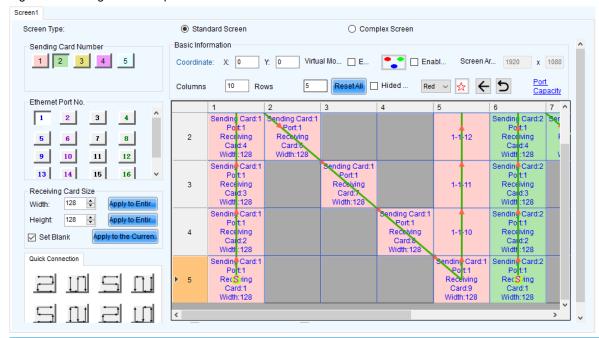

The blank size must be set based on the loading capacities of the neighbor receiving cards.

Figure 5-23 Setting receiving card blank

Step 7 Repeat Step 4 to Step 6 to set the receiving cards loaded by the other output ports.

Figure 5-24 Configuration completed

Note

To configure a complex screen efficiently, you are advised to configure a standard screen first and then configure the complex screen based on the standard screen by following the operations below.

After the standard screen is configured, select **Complex Screen**. The **Complex Screen** page shows the connection diagram of the standard screen. The connection diagram in Figure 5-24 is shown as the diagram in Figure 5-25.

You can directly drag cabinets on the left or adjust data in the table on the right to let the configuration meet the actual screen configuration requirements.

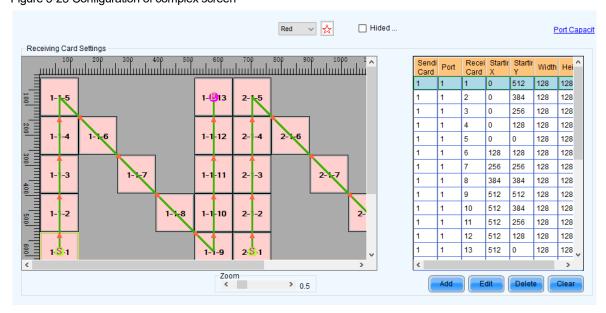
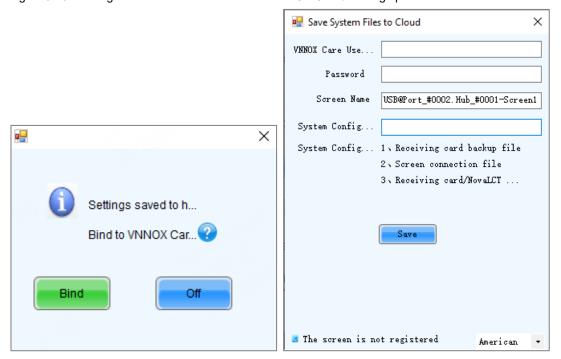
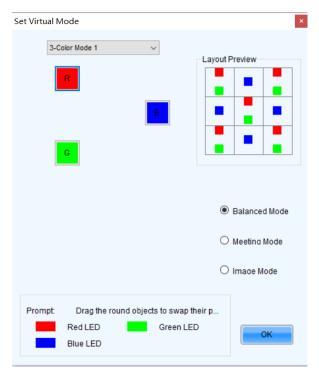



Figure 5-25 Configuration of complex screen

- Step 8 Click **Send to HW** to send the configuration information to the hardware. If necessary, click **Save to File** to save the configuration information as a file.
 - Once sent to the hardware, the interface will prompt whether to bind to VNNOX Care. To bind the screen to VNNOX Care., click Bind in the pop-up dialog box. If the screen is not yet bound to VNNOX Care, enter the VNNOX Care user name and password, screen name, and system configuration file name. Then, select the node and click Save.

Figure 5-26 Sending to hardware - whether bind to VNNOX Care / binding operation


- Empty cabinets cannot exist before saving configuration. You can set the empty cabinets blank.
- Step 9 After the settings are done, click **Save** to save the configuration information to the hardware.
- Step 10 After successful saving, choose whether to save the backup file to the local computer.

When the control computer can access the Internet, you can use the backup file to register screens to VNNOX Care. For details, see 7.1.2.1 Register by Using Local Backup Files (Recommended).

This step is related with the configuration of the save function. See 11.3 Configure the Save Function.

Related Operations

- Detect Communication Status: Detect the status of connection between the receiving card and Ethernet port.
- Read the Number of Receiving Cards: Read the number of receiving cards connected to the current Ethernet port.
- Test Pattern: Display test patterns through the sending card, receiving card, or Ethernet port. Additionally, you can perform screen controls like normal display or blackout.
- Enable Mapping: Enable the Mapping function. The Mapping function is for you to obtain the receiving card connection information conveniently.
- Read from HW: Read the current configuration information in the hardware.
- Coordinate: Set the start position of the display image on screen.
- Virtual Mode: For modules with shared pixels (sub-pixels), you can check the Enable checkbox and then click
 to set the parameters for virtual pixels.

- Balanced Mode: Suited for standard display scenarios.
- Meeting Mode: Suited for displaying documents.
- Image Mode: Suited for displaying images and videos.

5.2.3 Step 3 (Optional) Save Configuration Files

Applications

After the screen configuration is done, save the configuration file of the online screen to the cloud (VNNOX Care) and the local computer, or save the configuration file of the offline screen to the local computer.

Applicable Products

All receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

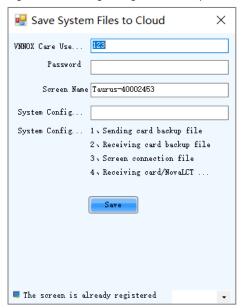
Prerequisites

To save the configuration files to the cloud, the following conditions must be met:

- You have a valid VNNOX Care account.
- The control PC is connected to the Internet.

Related Information

When saving the configuration files of a screen that is not registered with the cloud, the screen will be registered with VNNOX Care automatically. During registration, NovaLCT will automatically enable **Automatic Refresh** and **Link to NovaiCare** in the monitoring configuration. If you want to set the refresh period, please see 7.2 View and Configure Monitoring.


The configuration files saved to the cloud include the receiving card configuration file (.rcfgx), screen connection file (.scr), version file (.cfg), etc. The version file contains the version information about NovaLCT and the receiving card program package.

The configuration files saved to the local computer include the system configuration file (.scfg) only.

Operating Procedure (Online Screens)

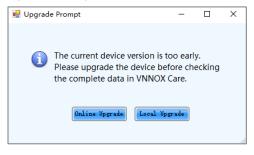
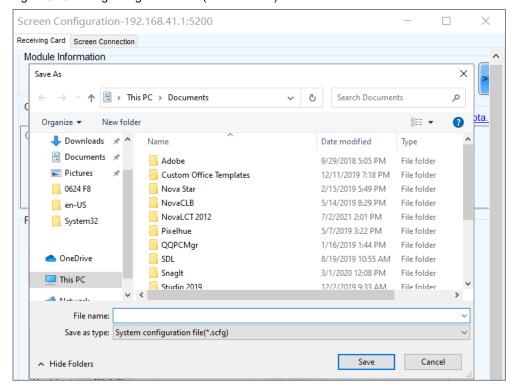

Step 1 On the **Screen Configuration** page, click **Save System Configuration File** to open the dialog box shown in Figure 5-27.

Figure 5-27 Saving configuration files (online screen)

- Step 2 Enter your VNNOX Care user name and password, set the screen name and system configuration file name, and select a server node.
- Step 3 After the parameter settings, click Save.
- Step 4 Do the corresponding operation below based on the multimedia player firmware version.
 - Firmware version V3.3.0 or later: After the configuration file is saved, close the prompt box. No further action is required.
 - Firmware version earlier than V3.3.0: Go to Step 5.
- Step 5 Do any of the following operations to upgrade the firmware version and save the configuration file to cloud and local PC. (The device will automatically restart during upgrade.)

Figure 5-28 Upgrade prompt



- Online upgrade
 - e. Click Online Upgrade.
 - f. In the pop-up dialog box, click Upgrade.
 - g. After successful upgrade, close the dialog box.
- Local upgrade
 - a. Click Local Upgrade.
 - b. Select a firmware package from local PC and click Open.
 - c. After verification, click Upgrade in the pop-up dialog box.
 - d. After successful upgrade, close the dialog box.

Operating Procedure (Offline Screens)

Step 1 On the **Screen Configuration** page, click **Save System Configuration File** to open the dialog box shown in Figure 5-29.

Figure 5-29 Saving configuration files (offline screen)

- Step 2 Select a location from the control PC and click Save.
- Step 3 After successful saving, click **OK** to close the prompt box.

5.3 Set Redundancy

Applications

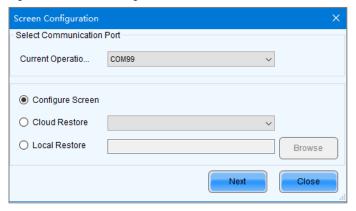
Set device redundancy and Ethernet port redundancy to ensure high reliability of the control system in applications like stage and conference center.

Applicable Products

Applicable to the T60 and TB60 multimedia players

Prerequisites

Redundancy related hardware connection is completed.


Related Information

None.

Operating Procedure

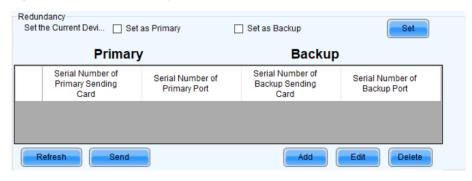
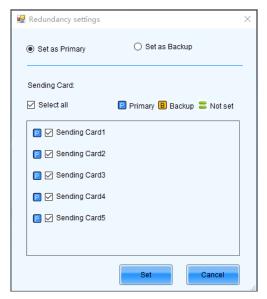

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 Click Screen Configuration or choose Settings > Screen Configuration from the menu bar.
- Step 3 On the pop-up dialog box, select a communication port and choose Configure Screen. Then, click Next.

Figure 5-30 Screen configuration method

Step 4 On the **Sending Card** tab, perform any of the following operations as required.

Figure 5-31 Screen redundancy

Configure device redundancy


Set a single device

Select Set as Primary or Set as Backup to set the current device as the primary or backup device.

Set multiple devices

Click **Set** to open the **Redundancy settings** dialog box. Then, select **Set** as **Primary** or **Set** as **Backup**. At last, select the sending cards you want to set and click **Set**.

Notes

To set a single backup device as the primary device, deselect **Set as Backup** first, send the settings to

the hardware and then select Set as Primary.

The sending card that is used in the completed screen configuration cannot be set as backup device. To set it as backup device, you must delete the screen configuration information first.

After configuring the backup device, when the primary device is operating normally and the backup device is inactive, the corresponding receiving card in the monitoring interface will be displayed in blue, indicating **Backing up**.

Configure Ethernet port redundancy

a. Click Add to open the Redundancy Settings dialog box.

b. Enter the serial numbers of the sending cards and output ports, and click Add.

For Ethernet port redundancy within a sending card, enter the same value for serial numbers of the primary and backup sending card. For Ethernet port redundancy between sending cards, enter the actual serial numbers of the primary and backup sending cards after they are cascaded.

- c. After the configurations are done, click Close.
- Step 5 Click **Send** to send the configuration information to the hardware, or click **Save** to save the information to the hardware.
- Step 6 After successful saving, choose whether to save the backup file to the local computer.

When the control computer can access the Internet, you can use the backup file to register screens to VNNOX Care. For details, see 7.1.2.1 Register by Using Local Backup Files (Recommended).

This step is related with the configuration of the save function. See 11.3 Configure the Save Function.

5.4 Set Performance Parameters

Applications

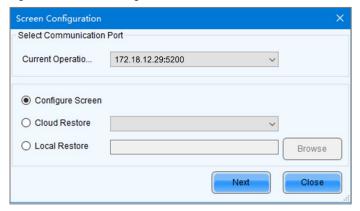
Set the performance parameters of the cabinet to let the screen present better display effect.

Applicable Products

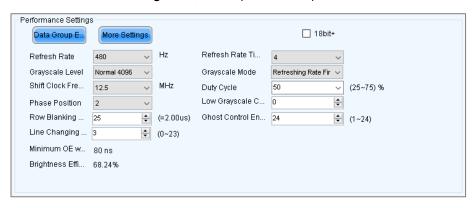
All receiving cards

Prerequisites

None


Related Information

None


Operating Procedure

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 Click Screen Configuration or choose Settings > Screen Configuration from the menu bar.
- Step 3 On the pop-up dialog box, select a communication port and choose Configure Screen. Then, click Next.

Figure 5-32 Screen configuration method

- Step 4 Click the Receiving Card tab and click Readback to obtain the latest configuration information.
- Step 5 If you have a receiving card configuration file (.rcfgx/.rcfg), click **Load from File** to complete the configuration quickly. If do not have the file, preform the subsequent operations to manually configure the performance.
- Step 6 In the **Performance Settings** area, set the performance parameters.

The performance parameters displayed in the area varies depending on the receiving card. The main parameters include the followings.

- Refresh Rate: Indicates the rate of updating the image on the display. Increasing refresh rate reduces image flickering, allowing for a more stable image.
- Grayscale Level: Indicates the shading of display. The higher the grayscale level, the more brightness levels the
 display will have. For example, if the grayscale level is 16bit, the display can express 65,536 levels of brightness.
- Grayscale Mode: Indicates the grayscale display mode. It includes brightness first, refreshing rate first, grayscale first and performance balancing.
- DCLK Frequency: Indicates the frequency of shift clock.
- DCLK Duty Cycle: Indicates the duty cycle of shift clock. Set it to 50% in general.
- DCLK Phase: Indicates the phase of shift clock. When there are mismatching or flashing pixels, adjust this
 parameter to fix the problem.
- Refresh Rate Times: Indicates the times of refresh rate.
- Low Grayscale Compensation: Indicates the compensation for the grayscale in low grayscale conditions, allowing for more precise grayscale.
- Row Blanking Time: Used to adjust the ghost problem of the scanning type display. If the ghost problem is serious, increase the parameter value.
- Line Changing Time: Works with row blanking time to adjust the ghost of the scanning type display.
- Ghost Control Ending Time: Works with row blanking time and line changing time to adjust the ghost of the scanning type display.
- Line break trimming: Works with row blanking time to adjust the ghost of the scanning type display.
- GCLK Frequency: Indicates the frequency of grayscale clock.
- GCLK Duty Cycle: Indicates the duty cycle of grayscale clock.
- GCLK Phase: Indicates the phase of grayscale clock.

- Blanking Time Height: Used to eliminate the lower ghost
- Minimum OE Width: It is calculated from other performance parameters and can be viewed only.
- Brightness Efficiency: It is calculated from other performance parameters and can be viewed only.
- Step 7 After the settings are done, click **Send Performance Parameters** to send the performance parameters to the hardware.
- Step 8 After the display effect meets the expectation, click **Save** to save the performance parameters to the hardware.
- Step 9 After successful saving, choose whether to save the backup file to the local computer.

When the control computer can access the Internet, you can use the backup file to register screens to VNNOX Care. For details, see 7.1.2.1 Register by Using Local Backup Files (Recommended).

This step is related with the configuration of the save function. See 11.3 Configure the Save Function.

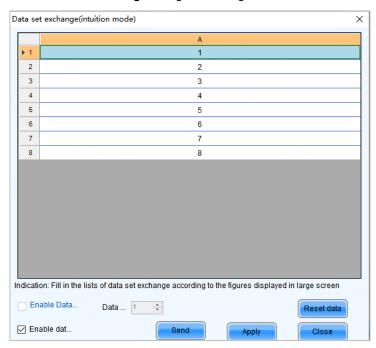
Data Group Exchange

This function is used to exchange every two data groups to adjust the display image. It can be performed only after the smart settings are done and supports regular cabinets only. For example, after you exchange the data groups A and B, data group A outputs the image of data group B, and data group B outputs the image of data group A.

Click **Data Group Exchange**, select all the receiving cards or specify one receiving card and click **OK** to open the **Data set exchange** dialog box. If the module height is less than 8 or the width is less than 20, the data group exchange is in group mode, otherwise it is in intuition mode.

To display the test pattern by data groups, check Enable Data Group Display and specify the data group number.

The red table on the desktop indicates the original data groups. Each row is a data group. The first row is the first data group.


Intuition Mode

Select **Enable data exchange** and view the data group No. displayed on the screen. In the dialog box, double click the rows with the same No. in the second column and change the numbers.

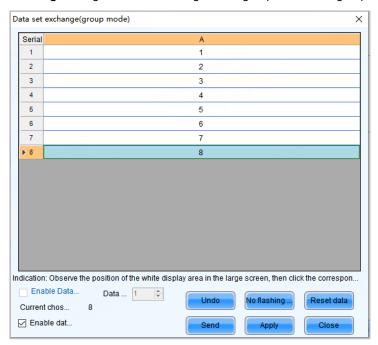
Example:

The receiving card has two data groups in parallel output. The screen displays **5** and **6**, indicating that it outputs the images of data group 5 and data group 6.

In the Data set exchange dialog box, change 5 to 1, 6 to 2, 1 to 5, and 2 to 6, as shown in the figure below.

Click **Send**. The screen displays **1** and **2**, indicating that it outputs the images of data group 1 and data group 2 after data group exchange.

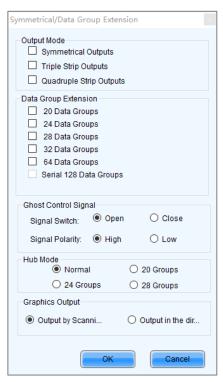
Group Mode


Select **Enable data exchange** and check whether the screen has a white area. If it has no white area, click **No flashing area**. The white row in the red table moves to the next data group. If it has a white area, click the data group you want to exchange in the **Data set exchange** dialog box.

Example:

The receiving card has two data groups in parallel output. Click **No flashing area** multiple times and watch the screen. When the white row in the red table moves to the fifth data group, the screen has a white area, indicating that the screen outputs the image of data group 5.

In the **Data set exchange** dialog box, click the first data group. This exchanges data group 5 and data group 1. The white row automatically moves to the sixth data group. Then, click the second data group in the **Data set exchange** dialog box. This exchanges data group 6 and data group 2, as shown in the figure below.

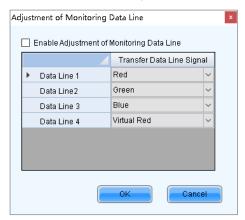

After the settings are done, click **Send** to send the configuration information to receiving cards.

More Settings

Click More Settings to perform the following functions and set the extended attributes for the used chip.

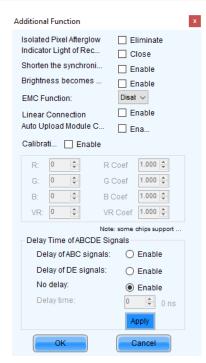
◆ Symmetrical/Data Group Extension

Set the output mode of data group, data group extension, hub mode and graphics output direction.



- Output Mode: If the screen is very wide and the receiving card cannot load the entire width, set the output
 mode to symmetrical outputs, triple strip outputs or quadruple strip outputs.
- Data Group Extension: If the receiving card supports data group extension, select the corresponding option according to the actual condition.
- Ghost Control Signal: Use the default value.
- Hub Mode: Select a mode based on the receiving card specifications.
- Graphics Output: Use the default value.

Monitoring Card Data Line Adjustment


Adjust the data lines used by red, green, blue and virtual red LEDs during LED error detection.

Select Enable Adjustment of Monitoring Data Line and select Red, Green, Blue or Virtual Red from the dropdown list. After the settings are done, click OK.

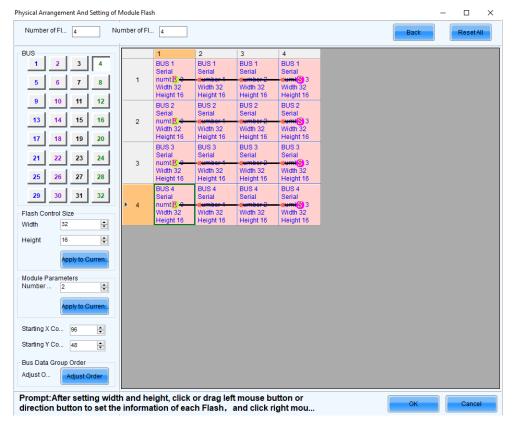
Additional Function

Set some additional functions of the receiving card.

The EMC function can be set to Disable, Weak, Medium or Strong. The other functions are described as follows.

- Isolated Pixel Afterglow: Eliminate the afterglow problem of isolated pixels.
- Indicator Light of Receiving Card: Turn off the operating status indicator of receiving card.
- Shorten the synchronization time: Shorten the frame interval time during data output of receiving card.
- Brightness becomes strong slowly: Make the display become brighter slowly after the power is supplied.
- Linear: Increase the loading capacity of receiving card. The linear mode requires that the module connection line is straight, the cabinet does not have data row extraction and the cabinet is not rotated.
- Auto Upload Module Calibration Coefficients: Once selected, if the control system detects a change in the module ID upon power-up, it will automatically upload the calibration coefficients from the module flash to the receiving card.
- Calibration Threshold: When the grayscale level is less than or equal to the specified level, use the average calibration coefficients, other than the pixel level calibration coefficients. This fixes the display problems in low grayscale after the screen is calibrated, such as mottling, color blocks and grayscale spikes.

The R, G, and B values are hexadecimal and the largest value is FFFF. Before setting them, check the Y-axis value corresponding to the X-axis value (the specified grayscale level) in the Gamma table in the brightness adjustment function, and then convert the Y-axis value to hexadecimal value. If the device does not support individual Gamma adjustment for RGB, set the R, G and B to the same value. The VR value setting is optional.

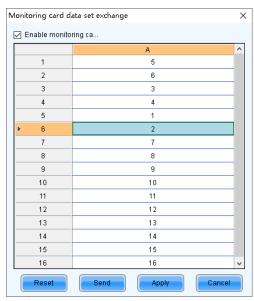

The threshold coefficient is used to determine the transition mode of pixel level calibration below the threshold value. The coefficient range is from 0.000 to 1.200, where 0 signifies no transition, rendering the pixel level calibration ineffective straightaway. The larger the value, the more gradual the decrease in effectiveness of the pixel level calibration.

 Delay Time of ABCDE Signals: Fix the problem that the afterglow cannot be eliminated because the decoding signals are not synchronized. After the settings are done, click **Apply**.

Flash Arrangement

When the module has a flash memory, use this function to set the flash memory arrangement of cabinet. The receiving card reads the calibration coefficients and module IDs from the flash memory via bus.

Before connecting the modules that have flash memory, obtain the bus No. A bus can cascade multiple modules. Then, set the flash arrangement according to the actual connection order.

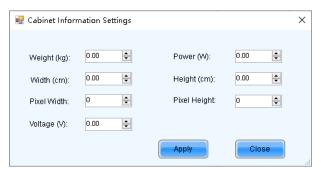

- a. Set the number of flash memory rows and columns. Generally, a module has one flash memory.
- b. Click the bus No.
- c. Set the width and height of the module controlled by the flash memory.
- d. In the arrangement table, click the cells in order according to the actual module connection.

Right clicking a flash memory cell cancels the configuration of that flash memory. Clicking **Back** returns to the previous operation. Clicking **Apply to Current BUS** sets all the flash memories connected to the current bus to the same value.

- e. Set the number of data groups of the module and the start coordinates of the flash memory.
- f. Click Adjust Order to arrange the data group numbers as necessary.
- g. If necessary, click the other bus to continue setting. After the configurations are done, click **OK**

Monitoring Card Data Set Exchange

When the hardware connections of the monitoring card have errors, use this function to exchange the data groups of the card without the need to reconnect the hardware.



a. Click **Monitoring Card Data Set Exchange**. In the displayed dialog box, select **All Receiving Cards** or specify one receiving card and click **OK**.

- b. In the Monitoring card data set exchange dialog box, select Enable monitoring card data set exchange.
- c. Double click the row in the second column and change the value. For example, change 1 to 5, 2 to 6, 5 to 1, and 6 to 2, indicating that data group 1 is exchanged with data group 5 and data group 2 is exchanged with data group 6.
- d. After the settings are done, click **Send** to send the configuration information to the monitoring card.

Cabinet Information Settings

Set the weight, power, width, height, pixel width, pixel height and voltage of the cabinet base on the actual situation.

5.5 Set Module Flash Parameters

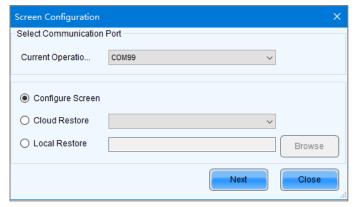
Applications

Send or read the module flash parameters, and configure automatic readback upon power-up.

Applicable Products

For receiving cards that support read-write flash module.

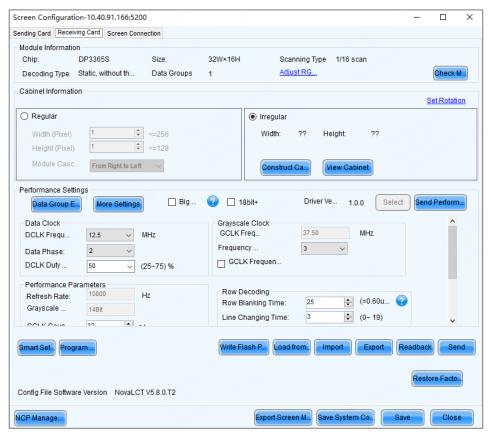
Prerequisites


Modules with flash memory and the TBS 614 chip.

Related Information

None

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 Click Screen Configuration or choose Settings > Screen Configuration from the menu bar.
- Step 3 On the pop-up dialog box, select a communication port and choose Configure Screen. Then, click Next.


Figure 5-33 Screen configuration method

Step 4 Click the **Receiving Card** tab and press the "NEC" (case sensitive) on your keyboard. www.novastar.tech

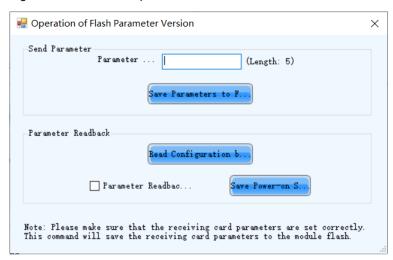

Step 5 Click the Write Flash Parameters that appears on the interface.

Figure 5-34 Receiving card

Step 6 Do the following as required.

Figure 5-35 Module flash parameters

Send Parameters

Set the parameter version ID, and then click **Save Parameters to Module Flash**. In the **Save Result** dialog box, you can check if the saving process was successful or not.

Read Parameters

Click **Read Configuration back to Rv Card**, specify the location of the receiving card in the pop-up dialog box, and click **OK**.

Check **Parameter Readback to Rv Card on Power On** and click **Save Power-on Switch**. If the parameter versions of the module and receiving card are inconsistent when the control system is powered on, the parameters in the module flash will be automatically read back to the receiving card.

6 Brightness and Chroma Adjustment

6.1 Calibration

6.1.1 Set Online Calibration Parameters

Applications

Set parameters of displaying image and disable calibration or set calibration type during online calibration when NovaLCT works with NovaCLB calibration software.

Applicable Products

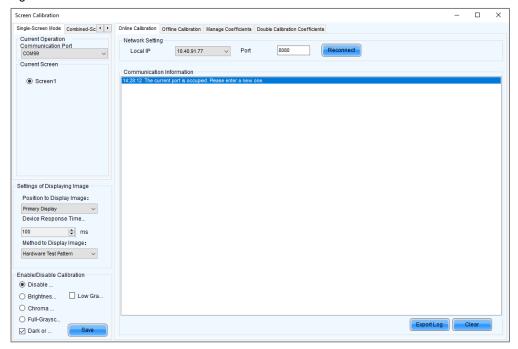
- Full-grayscale calibration: Applicable to the A10s receiving card
- Low-grayscale calibration: Applicable to the A10s receiving card
- Dark or bright line correction: Applicable to the A8s receiving card
- Other functions: Applicable to all receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

Prerequisites

- Hardware setup is done.
- NovaCLB calibration software is installed.

Related Information

Screen calibration enables the brightness and chroma of LEDs to reach target values, allowing for balanced images and better display effect.


Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

Step 2 Click calibration or choose Tools > Calibration on the menu bar.

Figure 6-1 Screen calibration

- Step 3 Select the Single-Screen Mode tab or Combined-Screen Mode tab.
- Step 4 In single-screen mode, select the screen you want to operate. In combined-screen mode, skip this step.
- Step 5 Select Disable Calibration, Brightness Calibration, Chroma Calibration, or Full-grayscale Calibration. Dark or Bright Line Correction and Low-grayscale Calibration can be selected at the same time. Click Save to apply your settings.
- Step 6 If network monitoring succeeds, open NovaCLB and enter the local IP address and port number displayed on the **Online Calibration** tab page of NovaLCT to connect NovaCLB to NovaLCT.

If network monitoring fails, click Reconnect, or change the port and then click Reconnect.

Step 7 (Optional) Click Export Log to export the communication log, or click Clear to clear the communication log.

6.1.2 Get Average Coefficients

Applications

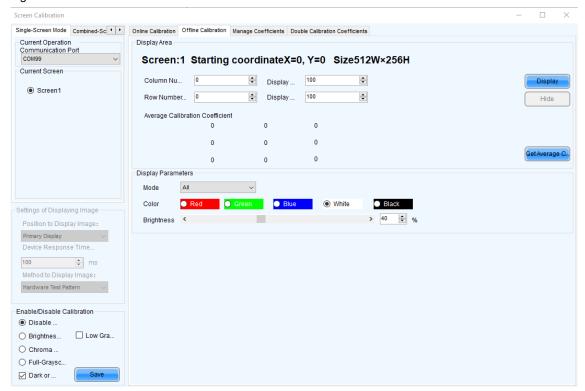
Get the average coefficients of a specified area on a screen.

Applicable Products

All receiving cards

Prerequisites

None


Related Information

Offline calibration is not available for combined screens.

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 Click calibration or choose **Tools** > **Calibration** on the menu bar.
- Step 3 Select the Single-Screen Mode tab.
- Step 4 Select a communication port and screen.

Step 5 Select the Offline Calibration tab.

Figure 6-2 Offline calibration

- Step 6 Specify an area where you want to get the average calibration coefficients.
- Step 7 Click Get Average Coefficients.
- Step 8 After the average calibration coefficients are obtained successfully, click **OK**.
- Step 9 (Optional) Click **Display** or **Hide** to show or hide the display window.

6.1.3 Manage Calibration Coefficients

Applications

Upload, save, adjust, erase and reload calibration coefficients.

Applicable Products

- Full-grayscale calibration: Applicable to the A10s receiving card
- Low-grayscale calibration: Applicable to the A10s receiving card
- Dark or bright line correction: Applicable to the A8s receiving card
- Other functions: Applicable to all receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

Prerequisites

- If you want to use a database file, you need to prepare it.
- Module flash management requires modules with flash memory.

Related Information

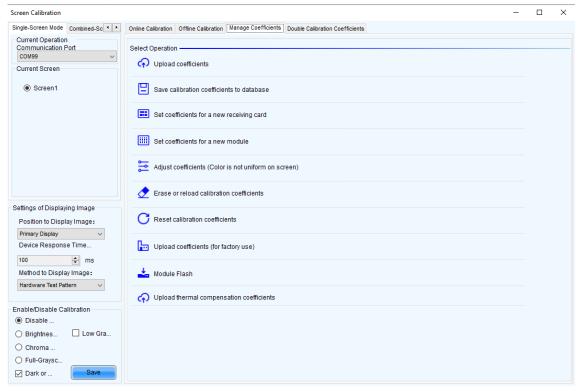
Combined screens only support calibration coefficient upload and do not support other calibration coefficient management features.

Pixel level calibration database files fall into two types:

Screen calibration database file

Saves the coordinates and calibration coefficients of each pixel on a screen. After the location of a cabinet is changed, the calibration coefficients cannot be uploaded to the cabinet.

Cabinet calibration database file


Saves the coordinates and calibration coefficients of each pixel on a cabinet according to the cabinet number. After the location of a cabinet is changed, the calibration coefficients can be uploaded to the cabinet according to the cabinet number.

Module flash memory can store calibration coefficients and module IDs. In the event of network outage, you can hold down the self-test button for 2 seconds to read the calibration coefficients in module flash memory back to the receiving card.

Operating Procedure

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 Click Calibration or choose **Tools** > **Calibration** on the menu bar.
- Step 3 Select the Single-Screen Mode tab.
- Step 4 Select a communication port and screen.
- Step 5 Select the Manage Coefficients tab.

Figure 6-3 Calibration coefficient management

Step 6 Perform the following operations as required. During the operation, you can select **Disable Calibration**, **Brightness Calibration**, **Chroma Calibration**, or **Full-grayscale Calibration** on the left. **Dark or Bright Line Correction** and **Low-grayscale Calibration** can be selected at the same time. After saving, you can view the effect of applied coefficients on the screen.

Upload coefficients

- Pixel level calibration database: Select the cabinet or screen calibration database file from the local computer and fast or stably upload the calibration coefficients to receiving cards.
- Dark or bright line database: select the dark or bright line correction database file from the local computer and stably upload the calibration coefficients to receiving cards.
- Full-Grayscale Calibration Database: Database: Select the full-grayscale calibration database file from the local computer and stably upload the calibration coefficients to receiving cards.

Stable uploading takes more time than fast uploading, but it is more stable and reliable.

Save calibration coefficients to database

Save the calibration coefficients in the receiving cards to an existing or new database. The coefficients for full-grayscale calibration will also be saved if **Full-Grayscale** is selected.

Set coefficients for a new receiving card

Get calibration coefficients by uploading calibration database file or referring to one or more surrounding cabinets. Adjust and save the coefficients to receiving cards as required.

Set coefficients for a new module

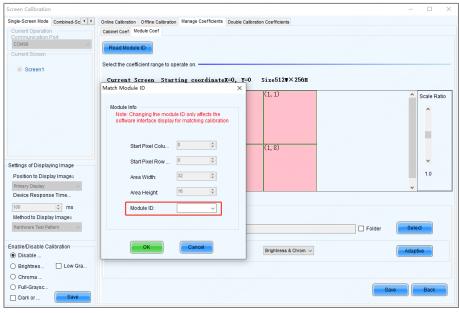
Get calibration coefficients by uploading calibration database file or referring to one or more surrounding modules. Adjust and save the coefficients to receiving cards as required.

Adjust coefficients (Color is not uniform on screen)

Adjust the current calibration coefficients of receiving cards or adjust the coefficients by referring to the surrounding area. After the adjustment, you can also apply the coefficients to other specified areas.

Erase or reload calibration coefficients

Erase the calibration coefficients in the application areas of receiving cards or reload calibration coefficients from application areas. You are advised to back up the database file before erasing it.


Reset calibration coefficients

Set calibration coefficients to specified values.

Upload coefficients (for factory use)

Upload the calibration coefficients from the cabinet calibration database file to the matching cabinets based on the imported or read cabinet ID. Export the full-screen cabinet ID file and the full-screen calibration database file. For the module, read the module ID and upload the calibration coefficients from the module calibration database file to the corresponding modules. While stable uploading takes longer than fast uploading, it is more reliable.

If the module ID in the database differs from the ID in the module's Flash, you can double-click the module and modify the ID in the pop-up Match Module ID dialog box. This action only changes the display in the software interface for matching calibration coefficient uploads and does not alter the ID stored in the hardware.

Module Flash

Check module flash memory status, view the calibration coefficients of modules and receiving cards, and save calibration coefficients to the receiving cards and modules based on their addresses or the topology.

Type "admin" with your keyboard. The Save Calibration Coefficients to Module button is displayed.

- Coef Type: The calibration coefficient type, including brightness & chroma coef, low-grayscale coef, full-grayscale coef, and adaptive coef.
- SPI Bit Rate Level: The speed level of reading and uploading the calibration coefficients, 4 levels included
- Auto Upload Module Calibration Coefficients: When this function is selected, if the system detects that a
 cabinet ID is changed after the control system is powered on, the calibration coefficients in the module flash
 memory will be automatically uploaded to the receiving card.

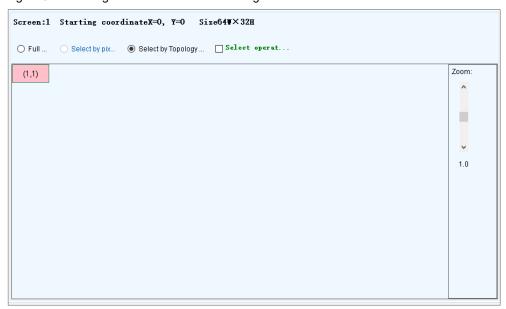
Upload thermal compensation coefficients

Import the thermal compensation coefficient file or read the coefficients from the hardware to adjust the red, green and blue coefficients individually, and send and save the coefficients.

- Adjust: Set the stepping of adjusting the coefficients.
- Enable Temperature Calibration Coefs: Apply the coefficients and check the effect on the screen.
- Clear: Clear the pixel level brightness and chroma calibration coefficients.
- Export: Export the thermal coefficient file.
- Erase: Erase the thermal coefficients.

Note

Types and causes of module flash memory check errors:


- Hardware Fault: Screen configuration or flash topology is not consistent with the actual condition.
- Communication Error: There is a problem with hardware connection.
- Flash Topology Error: The module does not have flash memory or no flash topology is configured in Screen Configuration.

The Coef Type parameter value include brightness & chroma coefficient, low-grayscale coefficient and fullgrayscale coefficient. To set that parameter value to low-grayscale coefficient or full-grayscale coefficient, ensure that both the driver chip and receiving card support low-grayscale coefficient or full-grayscale coefficient.

Related Operations

During coefficient management, three methods are provided for you to select an area for coefficient management.

Figure 6-4 Selecting an area for coefficient management

- Full screen: Manage the coefficients of the entire screen.
- Select by Pixel area: Manage the coefficients of a specified area.

For full-grayscale calibration database file, the parameter **Upload by area** is displayed at the bottom of the page. If you want to upload the data of full-grayscale database split by the split tool to a certain location, please select Upload by area and set other parameters.

Select by Topology or List: Manage the coefficients of a specified cabinet, module or pixels. For a standard screen, a cabinet topology is displayed. For a complex screen, a cabinet list is displayed. If it is not convenient to specify an area with the software, you can select Select Area on Screen to specify an area on the display window.

Two methods are provided for calibration coefficient adjustment. You can display or hide the color window during the adjustment.

Simple Adjustment

As shown in Figure 6-5, drag the slider to adjust the values of red, green and blue. Click Advanced Adjustment to open advanced adjustment page.

Advanced Adjustment

As shown in Figure 6-6, drag the slider to adjust the brightness, saturation and hue for red, green and blue, and adjust color temperature. Click **Simple Adjustment** to go back to simple adjustment page.

Figure 6-5 Simple adjustment

Figure 6-6 Advanced adjustment

6.1.4 Manage Double Calibration Coefficients

Applications

View calibration coefficients saved in the application area and factory area, get calibration coefficients in the factory area, and save calibration coefficients to the factory area.

Applicable Products

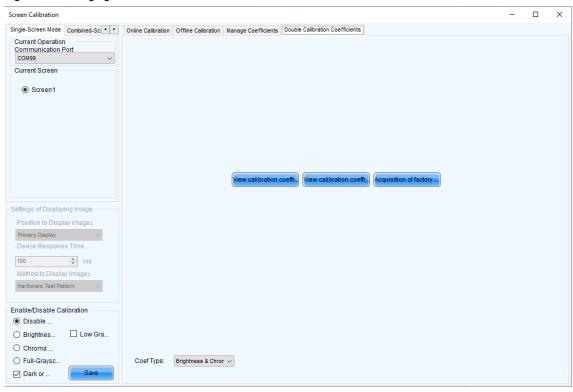
The A5, A5s, A7, A7s, A8, A8s, A9s and A10s Plus receiving cards

Prerequisites

None

Related Information

Calibration coefficients can be saved in both the factory area and application area of a receiving card. A copy of coefficients is saved in the factory area before a cabinet leaves the factory. The calibration coefficients usually used by users are in the application area. If necessary, calibration coefficients in the factory area can be restored to the application area.


Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

- Step 2 Click calibration or choose **Tools** > **Calibration** on the menu bar.
- Step 3 Select the Single-Screen Mode tab or Combined-Screen Mode tab.
- Step 4 In single-screen mode, select the screen you want to operate. In combined-screen mode, skip this step.
- Step 5 Select the Double Calibration Coefficients tab.

Figure 6-7 Managing double calibration coefficients

Step 6 Perform the following operations as required.

View calibration coefficients in application area

Click View calibration coefficients in application area, select Disable Calibration, Brightness Calibration or Chroma Calibration, and view the application result of calibration coefficients on the screen.

View calibration coefficients in factory area

Click View calibration coefficients in factory area, select Disable Calibration, Brightness Calibration or Chroma Calibration, and view the application result of calibration coefficients on the screen.

Get calibration coefficients in factory area

Click **Acquisition of factory area correction factor** to restore the calibration coefficients from factory area to application area.

Save calibration coefficients to factory area

Type "admin" with your keyboard. A **Save coefficients to factory area** button is displayed. Click the button to save the calibration coefficients in the application area to factory area.

6.1.5 Set Thermal Compensation

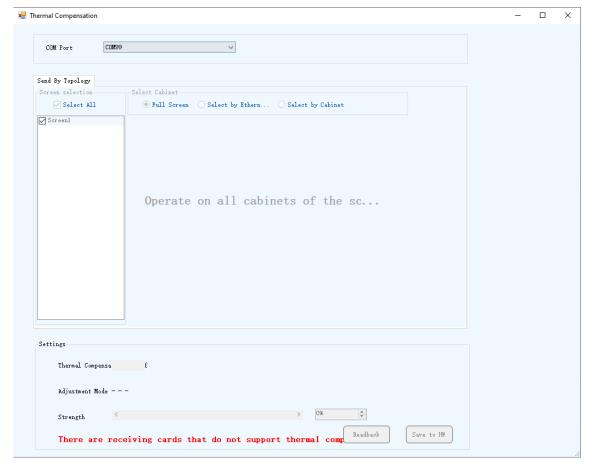
Applications

Enable or disable thermal compensation and adjust its application strength.

Applicable Products

Receiving cards: A8s Pro and A10s Pro

Prerequisites


The firmware version of the receiving card is V1.2.0.0 or above and includes thermal compensation coefficients.

Related Information

None

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 Choose **Settings** > **Thermal Compensation** from the menu bar.

Figure 6-8 Thermal compensation

- Step 3 Select a communication port from the drop-down list.
- Step 4 To select the target cabinets, choose between Full Screen, Select by Ethernet Port, or Select by Cabinet.
- Step 5 Toggle on Thermal Compensation and adjust the application strength.
- Step 6 Click Save to HW.

Notes

When the receiving card supports Thermal Compensation 3.0, the **Thermal Compensation** interface will be grayed out and non-operational.

6.2 Adjust Brightness

Applications

Manually adjust the scree brightness, Gamma, color temperature and color space to change the brightness and chroma expressiveness of the screen in real time, meeting the environment condition and user needs.

Applicable Products

- Gamma interlink: Applicable to receiving cards with TBS6332 or TBS6336 chips.
- Other functions: All receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

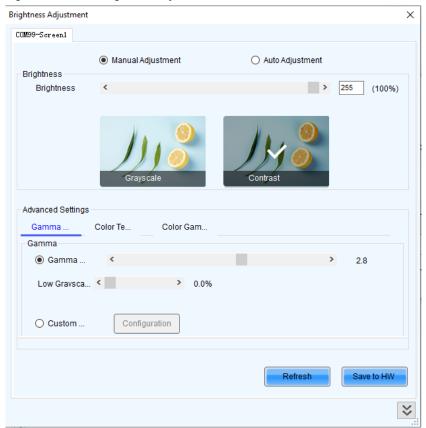
Prerequisites

None

Related Information

Manual brightness adjustment is to set screen brightness manually. After NovaLCT is opened, you can directly perform the steps in Operating Procedure. After logging in to NovaLCT, you can also perform the operations in Custom Gamma, Custom Color Temperature and Custom Color Space of this section.

If the ambient brightness is high, adjust the screen brightness to a higher level to ensure clear display. If the ambient brightness is low, adjust the screen brightness to a lower level to reduce light pollution.


Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

- Step 2 Click Brightness or choose **Settings** > **Brightness** on the menu bar.
- Step 3 Drag the slider to adjust brightness and select **Grayscale** or **Contrast**. You can also set **Gamma Interlink** if the screen is using receiving cards with TBS6332 or TBS6336 chips.

Figure 6-9 Manual brightness adjustment

Step 4 Do the following as required:

Adjust Gamma

Drag the slider to adjust the Gamma value and low grayscale slope, or set a custom Gamma by referring to the description in Custom Gamma.

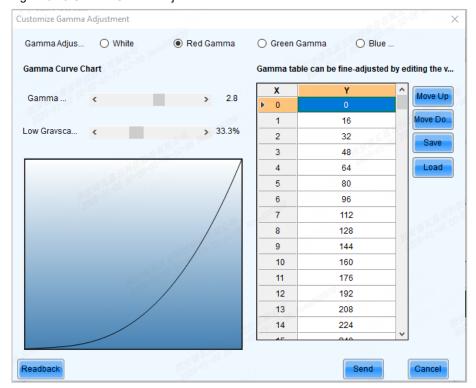
Adjust color temperature

Choose **Rough Adjustment** and drag the slider to adjust the color temperature. Or choose **Precise Adjustment** and click a custom color temperature to use it, such as see the description in Custom Color Temperature.

Adjust color space

Disable color space, enable a standard color space (PAL/NTSC), or enable a custom color space, such as

Disable PAL NTSC Cus...


To set custom color space, see the description in Custom Color Space.

Step 5 After the configuration is done, click **Save to HW** to save the configuration to the hardware.

Custom Gamma

- Step 1 On the Gamma Adjustment page, select Custom Gamma Adjustment.
- Step 2 Click Configuration to open the dialog box shown in Figure 6-10.

Figure 6-10 Custom Gamma adjustment

- Step 3 If the control system supports individual Gamma adjustment for RGB, select **White** to adjust the Gamma curves for red, green and blue at the same time. Or, select **Red Gamma**, **Green Gamma**, or **Blue Gamma** to adjust the Gamma curve for a single color. If the control system does not support individual Gamma adjustment for RGB, skip this step.
- Step 4 Perform any of the following operations as required to configure the Gamma curve.
 - Gamma readback

Click **Readback** to read the gamma information.

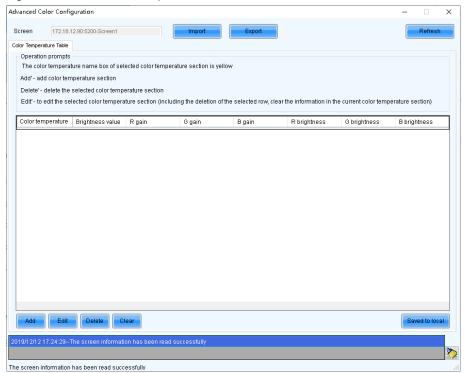
Load a Gamma configuration file

Click Load to load a Gamma configuration file.

Adjust the Gamma manually

Drag the slider to adjust the Gamma value and low grayscale slope.

Adjust the Gamma table manually


Double click a value in the Y column to edit the value, and select a value in the Y column and click **Move Up** or **Move Down**.

- Step 5 After the settings are done, click **Send** to send the configuration to the hardware.
- Step 6 (Optional) Click Save to save the Gamma information as a configuration file.

Custom Color Temperature

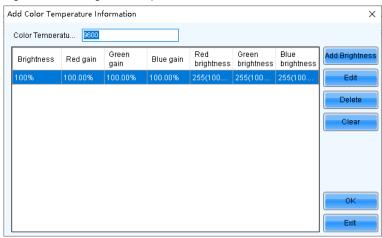

- Step 1 On the Color Temperature Adjustment page, select Precise Adjustment.
- Step 2 Click to open the dialog box shown in Figure 6-11.

Figure 6-11 Custom color temperature

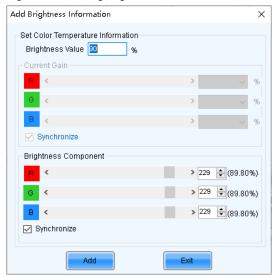

- Step 3 If you have a color temperature configuration file (.fcg), click **Import** to complete the configuration quickly. If you do not have a color temperature configuration file, continue performing the following operations to manually complete the configuration.
- Step 4 Click Add to open the dialog box shown in Figure 6-12.

Figure 6-12 Adding color temperature information

Step 5 Click **Add Brightness** to open the dialog box shown in Figure 6-13.

Figure 6-13 Adding brightness information

Step 6 Add color temperature information corresponding to the specified brightness values.

Current Gain is a color temperature parameter of modules. This parameter can be set when supported by module chips. Brightness Component is a color temperature parameter of receiving cards. If Synchronize is selected, the R, G and B parameters will be set to the same value. You can edit, delete and clear the color temperature information if necessary.

- Step 7 After the configuration is done, click Save to local to save the custom color temperature. A corresponding button will be displayed next to Precise Adjustment.
- Step 8 (Optional) Click **Export** to save the current color temperature information as a configuration file.

Custom Color Space

Step 1 On the Color Space Adjustment page, click to open the dialog box shown in Figure 6-14.

Advanced Color Configuration × Screen 172.18.12.90:5200-Screen1 Configure Color Space Draw black lines and common color temperatur. R 1 Original Color Space Сх Су Lum Red 0.675 0.33 900 Green 0.19 0.78 1800 0.13 Blue 0.04 300 White 3000 6504 K Color Target Color Space Red 0.64 0.33 127.5834 Green 0.3 0.6 429.1012 43.3154 0.06 Blue White Color 6504 K PAL NTSC × Enable col. Save to HW 2019/12/12 17:27:46--The screen information has been read successfully 172.18.12.90:5200-Screen1 Color reproduction information has not been set, please set it

Figure 6-14 Custom color space

Step 2 Set the original color space.

The white triangle represents the original color space. The target color space is configured based on the original color space. You are advised to use a colorimeter to measure the original color space of the screen and then enter the measured values in the original color space table.

Step 3 Perform any of the following operations as required to set custom color space.

Select a standard color space

Click PAL or NTSC to use one of the standard color spaces.

Select an existing custom color space

If there is a custom color space, click to use it. If not, click **Import** to import a custom color space, or click create a custom color space and then click to use it.

Adjust the color space diagram manually

Drag vertexes of the black triangle in the diagram on the left to adjust the target color space. If **Draw black lines** and common color temperature points is selected, a black curve (color temperature curve) and some common color temperature points (solid round spots) will be displayed in the diagram.

Adjust the color space values manually

Change the parameter values in the target color space table for precise adjustment.

- Step 4 After the configuration is done, select **Enable color space adjustment** to apply the target color space, and click **Send** to send the configuration information to the hardware.
- Step 5 Click **Save to HW** to save the information to the hardware.

6.3 Correct Brighter Pixels

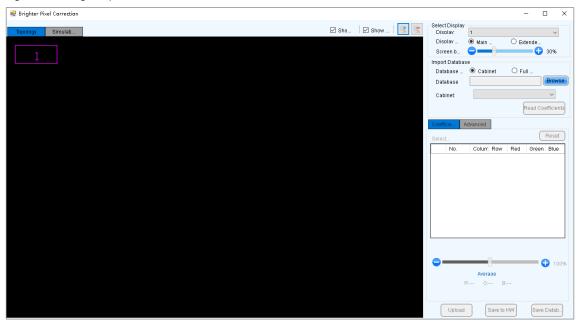
Applications

Correct brightness of pixels that are brighter or darker than normal to fix the problem that the pixel brightness of the screen is not uniform after calibration.

Applicable Products

All receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

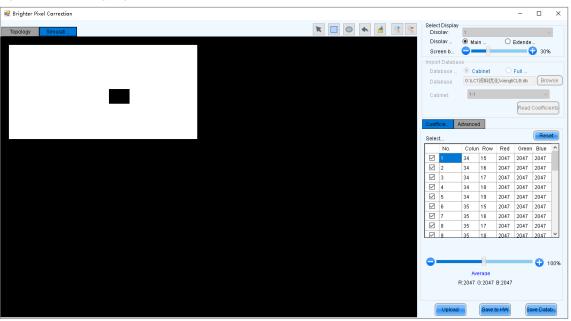
Prerequisites


Cabinets of the screen are calibrated or the entire screen is calibrated and the cabinet or screen calibration database file is saved.

Related Information

None

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 On the menu bar, choose Tools > More > Brighter Pixel Correction.


Figure 6-15 Brighter pixel correction

- Step 3 Select a screen.
- Step 4 Select a position to display image.
- Step 5 Set the brightness of the display window.
- Step 6 Select a database type, for example, Cabinet.
- Step 7 Click Browse and select a database file. For example, select a cabinet calibration database file and click Open.
- Step 8 On the **Topology** page, select an area and then select the **Simulation Diagram** tab.
- Step 9 $\,$ Click brighter pixels or select the area where there are brighter pixels and click $\,$ $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!$
 - Click to select a brighter pixel.

 - Select brighter pixels by clicking and dragging the mouse to form a selection oval.

Figure 6-16 Selecting brighter pixels

Step 10 Select **Coefficient Adjustment** or **Advanced** to adjust coefficients. www.novastar.tech

- Step 11 After the settings are done, click **Upload** to save the configuration to the hardware.
- Step 12 Click Save to HW to save the configuration information to the hardware.
- Step 13 (Optional) Click Save Database to save the configuration to the current database file.

6.4 Set Advanced Color

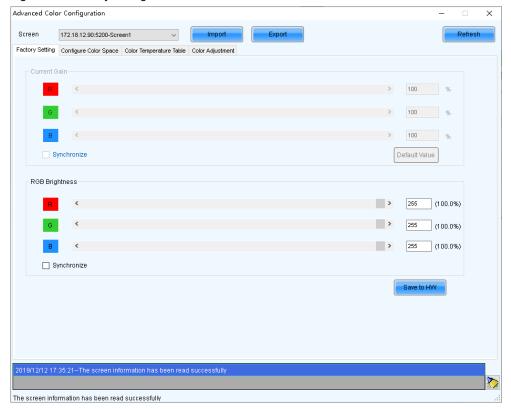
Applications

Improve the display effect of a screen by setting screen brightness, color space, color temperature, etc.

Applicable Products

- Color adjustment: Applicable to the NovaPro HD
- Other functions: Applicable to all multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

Prerequisites

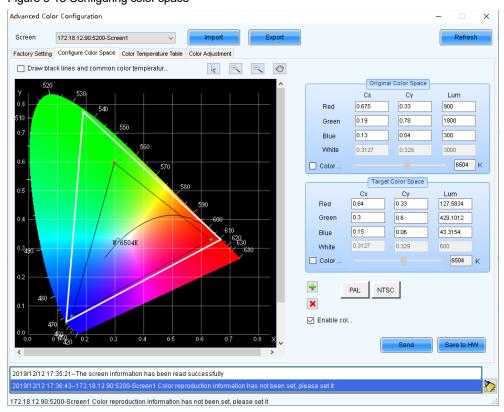

None

Related Information

None

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 On the menu bar, choose Settings > Advanced Color Configuration.
- Step 3 Click **Import** to quickly complete the configuration or continue performing the following operations to complete the configuration manually.
- Step 4 On the Factory Setting tab page, adjust parameters and then click Save to HW.

Figure 6-17 Factory settings



- Current Gain: This is a module parameter and can be set when supported by module chips. Clicking **Default** Value can reset the value.
- RGB Brightness: This is a receiving card parameter.

If **Synchronize** is selected, the R, G and B parameters will be set to the same value.

Step 5 Select Configure Color Space to set color space.

Figure 6-18 Configuring color space

1. Set the original color space.

The white triangle represents the original color space. The target color space is configured based on the original color space. You are advised to use a colorimeter to measure the original color space of the screen and then enter the measured values in the original color space table.

- 2. Perform any of the following operations as required to set custom color space.
 - Select a standard color space
 - Click PAL or NTSC to use one of the standard color spaces.
 - Select an existing custom color space

If there is a custom color space, click to use it. If not, click **Import** to import a custom color space, or click to create a custom color space and then click to use it.

Adjust the color space diagram manually

Drag vertexes of the black triangle in the diagram on the left to adjust the target color space. If **Draw black lines and common color temperature points** is selected, a black curve (color temperature curve) and some common color temperature points (solid round spots) will be displayed in the diagram.

- Adjust the color space values manually
 - Change the parameter values in the target color space table for precise adjustment.
- 3. After the configuration is done, select **Enable color space adjustment** to apply the target color space, and click **Send** to send the configuration information to the hardware.
- 4. Click **Save to HW** to save the configuration to the hardware.

Step 6 Select Color Temperature Table to set color temperature.

Figure 6-19 Color temperature table

- 1. Click **Add** to open the dialog box shown in Figure 6-20.
- 2. Click **Add Brightness** to open the dialog box shown in Figure 6-21.
- 3. Add color temperature information corresponding to the specified brightness values.

Current Gain is a color temperature parameter of modules. This parameter can be set when supported by module chips. **Brightness Component** is a color temperature parameter of receiving cards. If **Synchronize** is selected, the R, G and B parameters will be set to the same value. You can edit, delete and clear the color temperature information if necessary.

4. After the configuration is done, click Save to local to save the custom color temperature.

Figure 6-20 Adding color temperature information

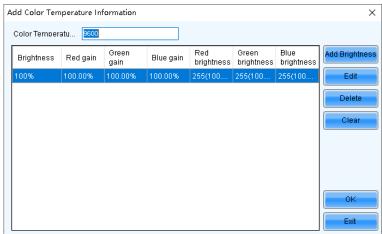
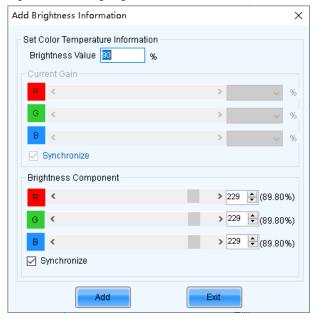



Figure 6-21 Adding brightness information

Step 7 (Optional) Click Export to save the configuration as a file.

6.5 Adjust Screen Effect

Applications

Enable 18bit+, ClearView and receiving card low latency to improve display effect.

Applicable Products

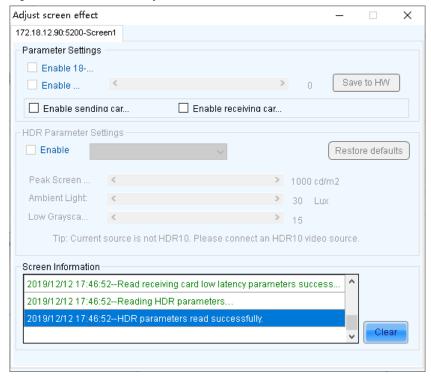
- 18bit+: Applicable to the A5s Plus, A7s Plus, A8, A8s, A10s Plus and DH7512 receiving cards
- ClearView: Applicable to the A8, A8s and A10s Plus receiving cards
- Receiving card low latency: Applicable to the A5s Plus, A6s, A8s, A10s Plus and AT60 receiving cards

Prerequisites

None

Related Information

The multimedia player does not support the sending card low latency and HDR functions.


18Bit+ can improve LED display grayscale by 4 times, avoiding grayscale loss due to low brightness and allowing for smoother images.

ClearView make texture, size, and contrast adjustments on different areas of the display image, creating a more realistic image.

Enabling receiving card low latency can reduce the delay by one frame.

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 Choose Settings > Adjust screen effect to open the dialog box shown in Figure 6-22.

Figure 6-22 Screen effect adjustment

Step 3 Perform any of the following operations as required.

Enable 18-bit mode (18Bit+)

Select Enable 18-bit mode and click Save to HW.

Enable ClearView

Select Enable ClearView, drag the slider to adjust the value and then click Save to HW.

Enable receiving card low latency

Select Enable receiving card low latency and click Save to HW.

6.6 Set Image Booster Engine

Applications

Using a professional color analyzer (also called light gun or colorimeter) to correct the cabinet's optical factors (such as color gamut, brightness, grayscale, and color temperature) to achieve precise brightness control and accurate color display.

Applicable Products

Applicable to the A8s-N, A10s Plus-N, A10s Pro receiving cards

Color management is also applicable to the A5s Plus and A7s Plus receiving cards

Prerequisites

When collecting screen data, if you select the auto or custom collection method, CA410-VP427, CA410-P427 or CA410-P427H (use when the brightness exceeds 3000 nits) and the hardware connection must be completed.

Notice

Adjusting the receiving card parameters affects the display effect.

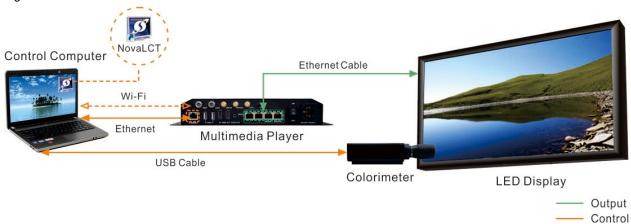
Related Information

When adjusting the effect parameters, it includes the color management, precise grayscale, and 22bit+ functions of the image booster:

Color Management

With the help of NovaStar's unique color management algorithm, the this function will realign the LED screen's color gamut to approximate the standard color gamut of BT.709, BT.2020 and D CI-P3, and eventually, the color gamut is adjusted to be consistent with the video source, eliminating color deviation and reproducing natural colors.

Precise Grayscale


With the help of professional optical instruments, individually correct the 65,536 levels of grayscale of the driver IC to fix the display problems at low grayscale conditions, such as brightness spikes, brightness dips, color cast and mottling and achieve pinpoint accuracy in grayscale control, allowing for a significant improvement in the quality of LED display images.

+ 22bit+

Harnessing the power of image quality algorithms, the bit depth of low shades of grayscales on the screen is elevated, resulting in an incredible 64-fold surge in dynamic contrast. This process effectively addresses common issues such as grayscale loss and contour lines that arise in case of insufficient grayscale on the screen, allowing for richer grayscale shading and intricate detail presentation for on-screen images.

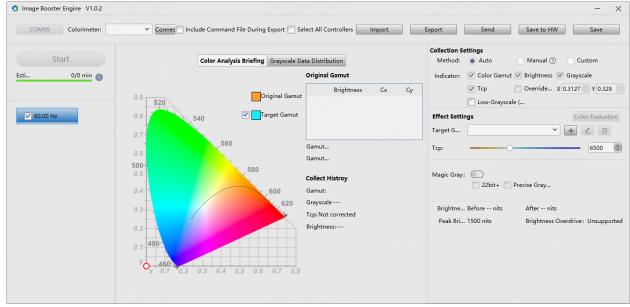

When you collect the screen data, ensure the colorimeter touches the screen closely. The hardware connection is illustrated in Figure 6-23.

Figure 6-23 Colorimeter connection

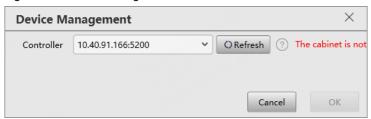

- Step 1 Log in to the multimedia player. For details, see 5 User Login.
- Step 2 On the main window, click next to the rightmost function icon to open the drop-down list and then click
- Step 3 On the Image Booster screen, click Please refresh and select device located at the top left corner.

Figure 6-24 Image booster

Step 4 In the Device Management dialog box, click Refresh and select a device from the drop-down options.

Figure 6-25 Device management

Step 5 Select the target cabinets, or toggle on Select Port to select all the cabinets of the Ethernet port and then click OK.

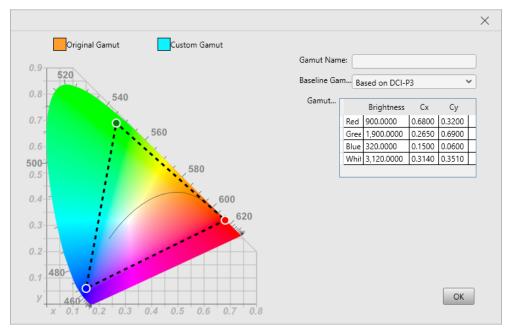
You can also identify, update, or restart the cabinets through the interface where you choose cabinets via Ethernet port.

- Step 6 On the left of the screen, select a frame rate.
- Step 7 Set Collection Acceleration and do the following according to the screen data collection method.
 - Automatic
 - a. Set the collection method to Auto.
 - b. Select a colorimeter model from the drop-down list.

When the hardware connection is normal, the software will automatically establish communication with the colorimeter after selecting a model.

- c. Click Start to automatically collect the screen data through the colorimeter.
- Manual
 - a. Set the collection method to Manual.
 - b. Select **Color Gamut**, manually collect the screen data, and then double-click the color gamut value in the table and modify it.
 - c. Select **Brightness** and then set the brightness before and after calibration.
 - d. Click Start to make the color gamut and brightness data take effect.
- Custom
 - a. Set the collection method to Custom.
 - b. Set the collection indicators.
 - c. Click **Start** to automatically collect the screen data through the colorimeter.

Notes


If an image quality file (.nrf/.vglcx) is available, you can click **Import** to import the image quality data and then adjust the effect parameter.

- Step 8 Under the Effect Settings, set the following parameters and view the effect on the screen.
 - Target gamut

Select a target gamut from the drop-down list. To view the target gamut in the color gamut diagram, select **Target Gamut** in the middle area of the **Correct Cabinets** screen.

Do the following to add custom gamut.

a. Click on the right of the drop-down list to open the adding custom gamut window.

- b. Enter a custom gamut name.
- c. Select a baseline gamut from the drop-down list.
- d. Double-click the cells in the table to change the gamut values or drag the vertex of the black triangle in the color gamut diagram to modify it.
- e. Click **OK** once you are done.

Select a custom gamut and then click up to edit it, or click to delete it.

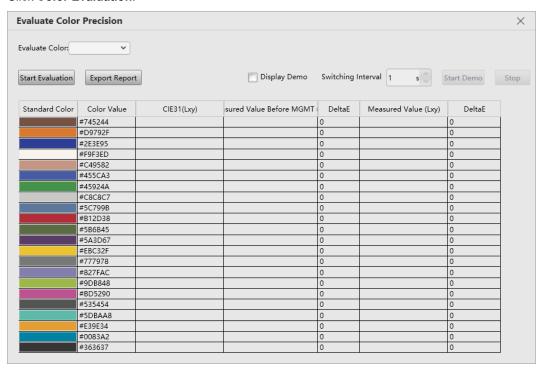
Color Temperature

Drag the slider to set the color temperature, or set the value in the entry box.

Magic Gray

Toggle switch to enable/disable this function. When this is enabled, **22bit+** and **Precise Grayscale** can be selected. When the receiving card supports Image Booster 2.1, an **Effect Settings** button will appear on the right side of the interface. Clicking this button will allow you to configure the relevant effect parameters in the dialog box that appears.

Dynamic Booster


Toggle switch to enable/disable this function. When this is enabled, drag the slider to adjust the intensity of the Dynamic Booster, and set the max brightness.

Brightness

Verify the pre-calibration brightness, post-calibration brightness, and peak brightness, and also check if brightness overdrive is supported.

Peak Brightness is the max brightness measured by the colorimeter.

- Step 9 Click **Export** to save the configuration into a file.
- Step 10 Click Send to send the configuration to the hardware, or click Save to HW to save the configuration to the hardware.
- Step 11 If you want to evaluate the color precision, do the following.
 - 1. Click Color Evaluation.

- 2. On the Evaluate Color Precision screen, select a gamut from the drop-down list and click Start Evaluation.
- 3. Select Display Demo.
- 4. Click any of the colors in the table and check their effect on the LED screen. Or, you can set the auto color switching interval and then click **Start Demo** to check the effects of all colors on the screen.
 - CIE31: The standard value of brightness, Cx and Cy of the color.
 - Measured Value Before MGMT: The measured value of brightness, Cx and Cy of the color in the original color gamut.
 - Measured Value: The measured value of brightness, Cx and Cy of the color in the target color gamut.
 - DeltaE: The deviation between the measured value and standard value.
- 5. Deselect Display Demo, click Export Report to save the evaluation result into a file.

6.7 Batch Check Calibration Effects

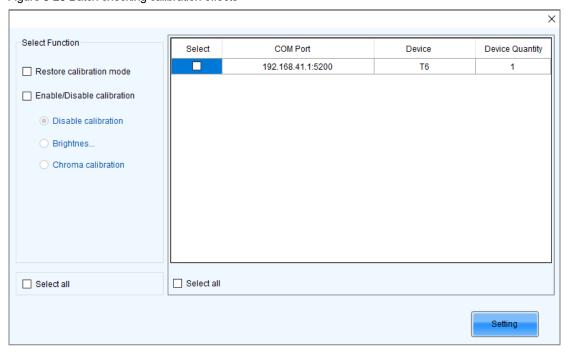
Applications

Batch check the effects of disabling calibration, brightness calibration and chroma calibration of multiple devices.

Applicable Products

All receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

Prerequisites


None

Related Information

None

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 From the menu bar, choose Tools > More > Device Settings.

Figure 6-26 Batch checking calibration effects

- Step 3 In the device list, select the device of which you want to check the calibration effects.
- Step 4 Select Enable/Disable calibration and click Setting.
- Step 5 Click **OK** to close the prompt box.
- Step 6 Select **Disable calibration**, **Brightness calibration** or **Chroma calibration** and check the corresponding display effects on the LED screen.

7 Screen Monitoring

7.1 Register Screens with VNNOX Care

7.1.1 Register Online Screens

Applications

Register your online screens with VNNOX Care to perform centralized monitoring of the screen working status from a remote place.

Applicable Products

All receiving cards and multimedia players

Prerequisites

- You have a valid VNNOX Care account.
- The control PC is connected to the Internet.

Related Information

None

Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

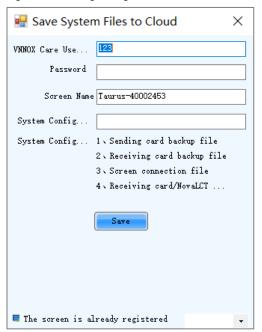

- Step 2 Click Screen Configuration or choose Settings > Screen Configuration from the menu bar.
- Step 3 On the pop-up dialog box, select a communication port and choose **Configure Screen**. Then, click **Next**.

Figure 7-1 Screen configuration

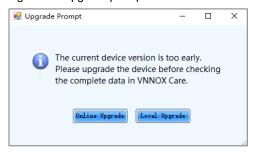

Step 4 On the **Screen Configuration** page, click **Save System Configuration File** to open the dialog box shown in Figure 7-2.

Figure 7-2 Saving configuration files

- Step 5 Enter your VNNOX Care user name and password, set the screen name and system configuration file name, and select a server node
- Step 6 After the parameter settings, click Save.
- Step 7 Do the corresponding operation below based on the multimedia player firmware version.
 - Firmware version V3.3.0 or later: After the configuration file is saved, close the prompt box. No further action is required.
 - Firmware version earlier than V3.3.0: Go to Step 8.
- Step 8 Do any of the following operations to upgrade the firmware version and save the configuration file to cloud and local PC. (The device will automatically restart during upgrade.)

Figure 7-3 Upgrade prompt

- Online upgrade
 - a. Click Online Upgrade.
 - b. In the pop-up dialog box, click Upgrade.
 - c. After successful upgrade, close the dialog box.
- Local upgrade
 - Click Local Upgrade.
 - b. Select a firmware package from local PC and click Open.
 - c. After verification, click **Upgrade** in the pop-up dialog box.
 - d. After successful upgrade, close the dialog box.

Notes

During registration, NovaLCT will automatically enable **Automatic Refresh** and **Link to NovaiCare** in the monitoring configuration. If you want to set the refresh period, please see 7.2 View and Configure Monitoring.

7.1.2 Register Offline Screens

7.1.2.1 Register by Using Local Backup Files (Recommended)

Applications

During the process of saving the screen configuration data, save the configuration files to the local PC. When the control PC can access the Internet normally, use the backup files to register the screens with VNNOX Care.

Applicable Products

All receiving cards and multimedia players

Prerequisites

You have a valid VNNOX Care account.

Related Information

None

Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

- Step 2 Click Screen Configuration or choose Settings > Screen Configuration from the menu bar.
- Step 3 On the pop-up dialog box, select a communication port and choose Configure Screen. Then, click Next.

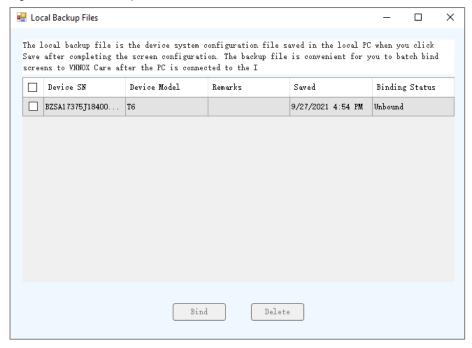
Figure 7-4 Screen configuration method

- Step 4 On the Screen Configuration page, click Save.
- Step 5 After successful saving, click **OK** to save the screen monitoring backup file to the local computer.

This step is related with the configuration of the save function. See 11.3 Configure the Save Function.

Step 6 After successful saving, click Close.

For devices with the same SN, NovaLCT uses the new file to overwrite the old file.


Figure 7-5 Saved successfully

Step 7 When the control PC can access the Internet normally, click Cloud Monitoring on the main window and then click **Local Backup Files** to open the dialog box shown in Figure 7-6.

Figure 7-6 Local backup files


Step 8 Enter a remark.

The remark will be the name of the successfully bound screen. If the remark is empty, the device SN will be the screen name.

- Step 9 Select the backup file records of one or multiple devices and click **Bind**.
- Step 10 Enter your VNNOX Care user name and password, select a server node and click OK

After successful binding, the **Binding Status** of the corresponding device in the **Local Backup Files** dialog box becomes **Bound**.

Figure 7-7 Binding to VNNOX Care

7.1.2.2 Register by Using Screen Monitoring Data

Applications

Export the configuration file of an offline screen. When the control PC can access the Internet normally, import the exported configuration file to VNNOX Care to complete screen registration.

Applicable Products

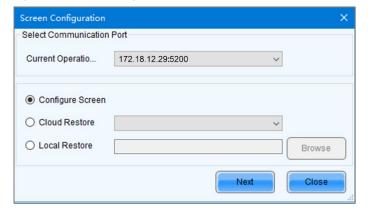
All receiving cards and multimedia players

Prerequisites

You have a valid VNNOX Care account.

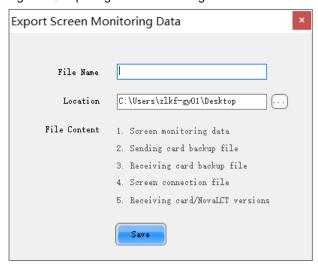
Related Information

None


Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

- Step 2 Click Screen Configuration or choose **Settings** > **Screen Configuration** from the menu bar.
- Step 3 On the pop-up dialog box, select a communication port and choose Configure Screen. Then, click Next.


Figure 7-8 Screen configuration method

Step 4 On the **Screen Configuration** page, click **Export Screen Monitoring Data** to open the dialog box shown in Figure 7-9.

PAGE

Figure 7-9 Exporting screen monitoring data

- Step 5 Set a file name, click to select a location and click Save.
- Step 6 After successful saving, click **OK** to close the prompt box.
- Step 7 When the control PC can access the Internet normally, log in to VNNOX Care.
- Step 8 Go to My Services > Screen Management to enter the screen management page.
- Step 9 Click Add Screen, select the exported screen monitoring data file and click Upload.

7.2 View and Configure Monitoring

Applications

View the monitoring information and configure the monitoring parameters to monitor the statuses of multimedia players, receiving cards, receiving card temperatures, monitoring devices, as well as humidity, smoke, fans, power supplies, cables, cabinet doors, modules, iCare, in order to detect abnormalities and handle them in time.

Applicable Products

- Use monitoring card for monitoring: Applicable to the MON300 monitoring card. This card works with the MRV320 and MRV560 receiving cards.
- Use smart module for monitoring: Applicable to the A4, A4s, A5, A5s, A5s Plus, A7, A7s, A7s Plus, A8, A8s, A9s, A10s Plus, XC200, XC100 and B4s receiving cards. The smart module monitoring function is a customized function of the receiving cards.
- Use hub product for monitoring: Applicable to the A4, A4s, A5, A5s, A7, A7s, A8, A8s, A9s, A10s Plus, XC200 and XC100 receiving cards. Using hub product for monitoring is an optional function of the receiving cards.

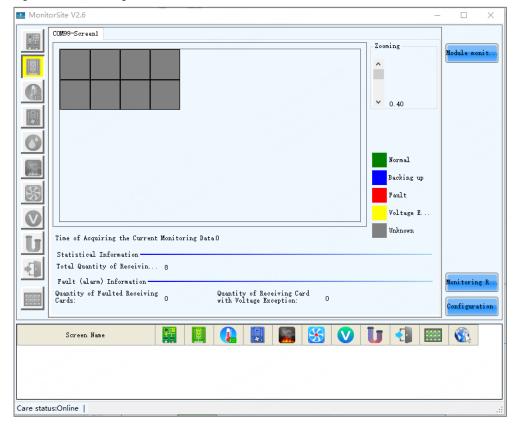
Prerequisites

- If you want to use the monitoring function of monitoring card, a monitoring card should be used between the module and receiving card.
- If you want to use the email service, the SMTP server address and port must be known in advance.

Related Information

When the monitoring card is used, hub monitoring and smart module cannot be used. Hub monitoring and smart module can be used simultaneously.

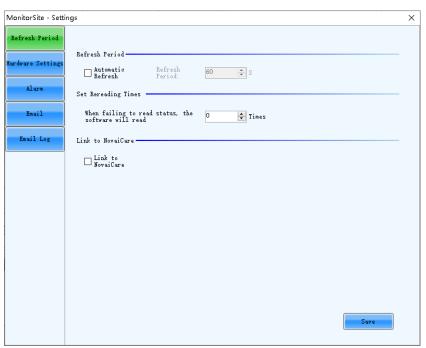
Operating Procedure


Step 1 Log in to the multimedia player. For details, see 4 User Login.

Step 2 Click Monitoring or choose Tools > Monitoring on the menu bar to open the monitoring page.

You can also right click on the desktop taskbar and select **Open MonitorSite** to open the monitoring page.

Figure 7-10 Monitoring

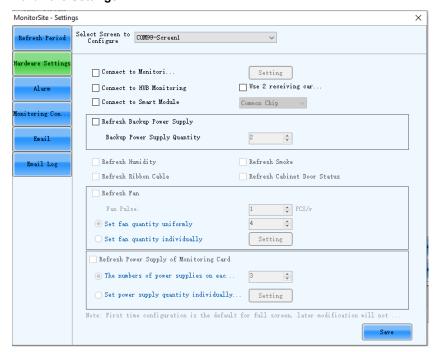


Note:

- Click Monitoring Refresh to manually refresh the monitoring information.
- On the desktop taskbar, right click and select Reload Screen to refresh the receiving card topology diagram.

Step 3 Click **Configuration** to set the monitoring parameters.

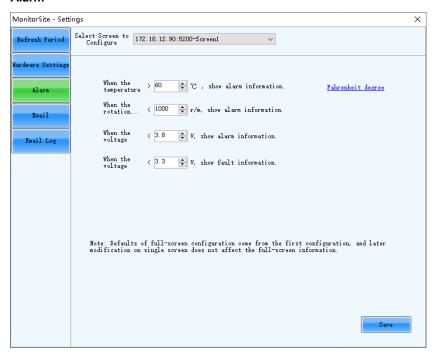
Refresh Period



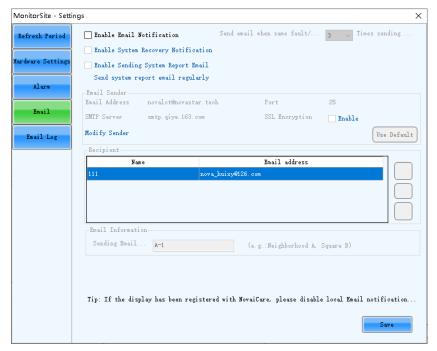
Set the necessary items below and click **Save** to save the settings.

- Select Automatic Refresh to set the refresh period. The monitoring information will be refreshed based on the set time period. If the screen is registered with iCare, this item must be selected.
- Set the reread times when the reading of the monitoring information from the receiving card fails.

For multimedia players, there is no need to select Link to NovaiCare.

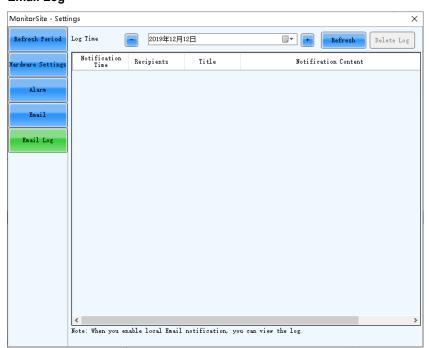

Hardware Settings

Set the necessary items below and click Save to save the settings.


- Select Connect to Monitoring Card and set the monitoring items. Click Setting to set the number of monitoring cards connected to each cabinet. The number is 0 or 1.
- Select Connect to HUB Monitoring and set the monitoring items.
- Select Connect to Smart Module and set the monitoring items. If the TBS 614 Chip is selected, you can click Module Monitoring in the monitoring interface to view and configure the information related to the module monitoring.
- Select Connect to HUB Monitoring and Connect to Smart Module, then set the monitoring items.

Alarm

Set the alarm thresholds for temperature, fan rotating speed and voltage. When the threshold value is exceeded, faults or alarms will be displayed. After the configuration is done, click **Save** to save the settings.


+ Email

Select Enable Email Notification. Set the necessary items below and click Save to save the settings.

- Set the condition for sending an email notification, namely how many times the same fault or alarm occurs consecutively.
- Select **Enable System Recovery Notification** to send email notification when the fault or alarm recovers.
- Select Enable Sending System Report Email and then click Send system report email regularly to set the email sending period and time.
- Click Modify Sender to change the email service related settings.
- Add, edit or delete the recipients.
- Set where the email is sent from.

Email Log

View or delete the email log. Enable the email notification function before log operations.

7.3 Configure Module Monitoring

Applications

Configure the module monitoring parameters to monitor the module's temperature, voltage, and bit error.

<u>Applicable Products</u>

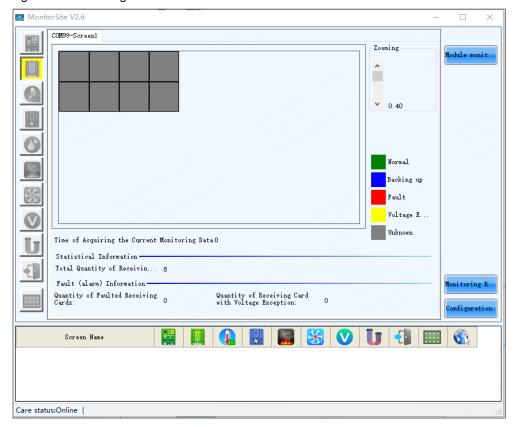
All receiving cards.

Prerequisites

- The module is equipped with a TBS 614 chip.
- You have selected Connect to Smart Module in the monitoring configuration, and along with the TBS 614 Chip.
- You have completed the Flash Arrangement. For more details, please refer to 5.4 Set Performance Parameters.

Related Information

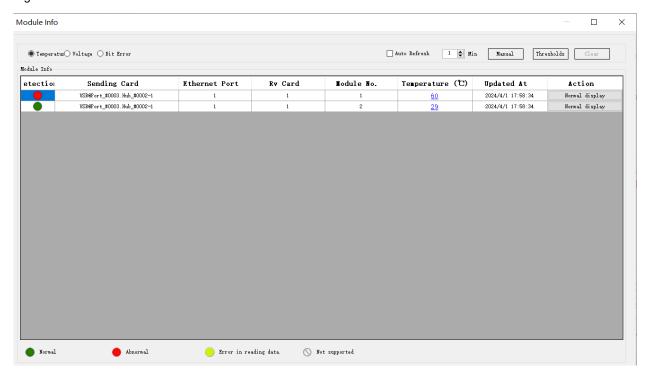
None


Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

You can also right click on the desktop taskbar and select **Open MonitorSite** to open the monitoring page.

Figure 7-11 Monitoring


- Step 3 Click Module Monitoring.
- Step 4 On the **Module Info** dialog box, select **Temperature**, **Voltage** or **Bit Error** to view the corresponding monitoring information. Click on the text link of the monitor result to view the details.

PAGE

Related Operations:

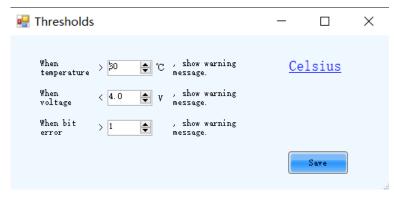

- The monitoring information will be refreshed once when you select the items to be monitored. To refresh again, click **Manual**.
- Screen Display: Click Normal display in the Action column to switch to Screen display, which will show the
 test pattern in the load area of the corresponding receiving card.
- Clear Errors: Click Clear Errors in the respective column to reset the errors of the corresponding receiving card.
 To reset the errors of all receiving cards in the list, click Clear in the top right corner of the interface.

Figure 7-12 Module information

- Step 5 (Optional) Select **Auto Refresh** and set the refresh interval.
- Step 6 Click Thresholds.
- Step 7 On the pop-up dialog box, set the alarm thresholds for temperature, voltage, and bit error. Clicking on **Celsius** or **Fahrenheit** allows you to switch temperature units.

Figure 7-13 Thresholds

Step 8 Click Save once you are done.

8 Screen Management

8.1 Multi-function Card Management

Applications

Configure the multifunction card, and perform power management, monitoring data viewing, peripheral settings and program loading.

Applicable Products

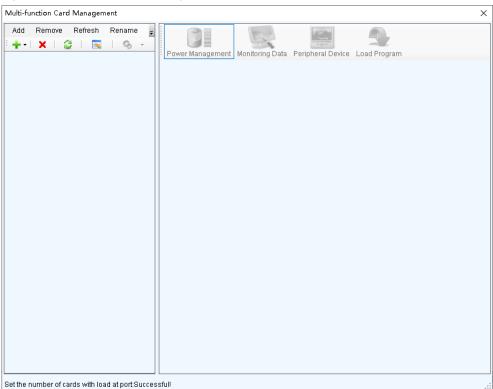
The MFN300 multifunction card

Prerequisites

Hardware connections for the multifunction card are done.

Related Information

None


Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

Step 2 Click Multi-function Card or choose Settings > Multi-function Card on the menu bar.

Figure 8-1 Multifunction card management

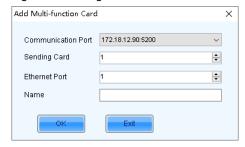
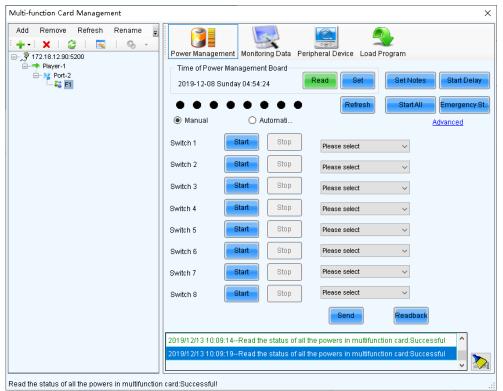
- Step 3 Click Add and select the connection type of the multifunction card.
 - Serial Port Connection: Select this option when the serial port of the multifunction card is connected to the USB port of the PC.
 - Ethernet Port Connection: Select this option when the Ethernet port of the multifunction card is connected to that of the multimedia player or receiving card.

You can also remove, refresh or rename the added connection.

For serial port connection, you can perform the following operations:

- Modify Serial Port: Change the current serial port to the one that is not configured for the multifunction card.
- Replace Serial Port: Replace the current serial port with the one that is connected with the multifunction card.
- Step 4 For serial port connection, choose a communication port and click **OK**. For Ethernet port connection, choose a communication port and set other parameters as shown in Figure 8-2, and then click **OK**.

Figure 8-2 Adding multifunction card

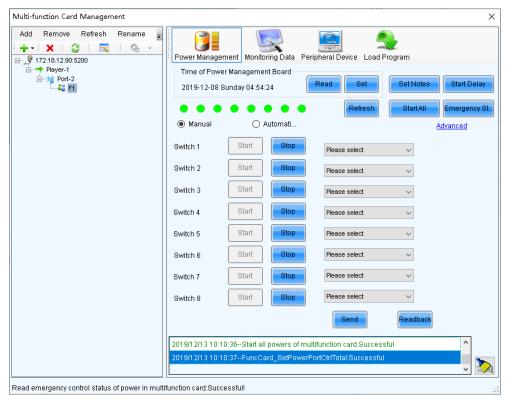
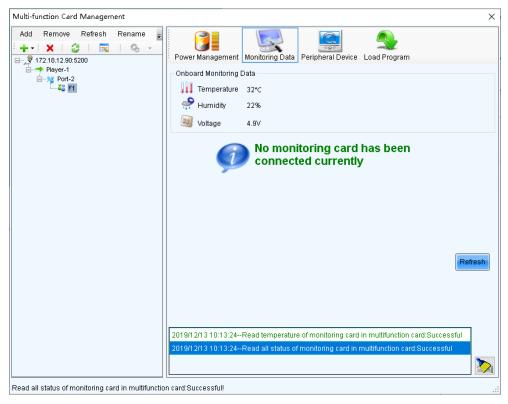
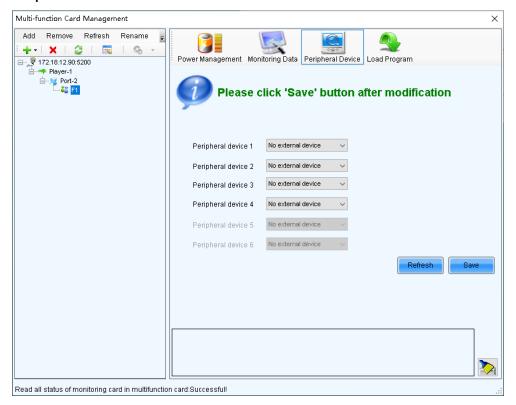

Figure 8-3 shows the user interface of an Ethernet port connection that is added successfully. The following procedure takes Ethernet port connection as an example to illustrate the function.

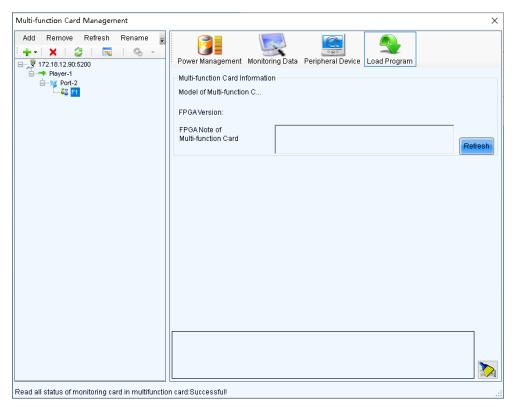
Figure 8-3 Ethernet port connection


Step 5 Use any of the following functions as needed.

Power Management

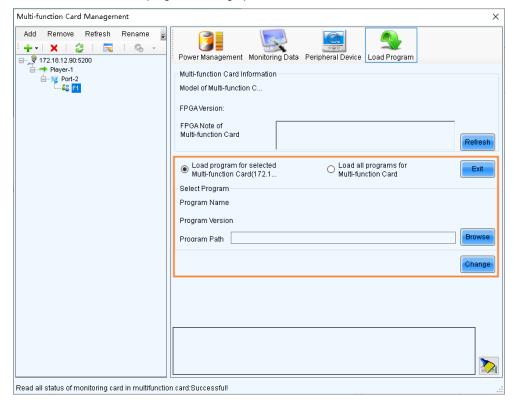

- Read: Read the time from the multifunction card.
- Set: Set the multifunction card time to the PC time.
- Set Notes: Write notes for the power supplies.
- Start Delay: Set the delay time for powering on the multifunction card.
- Refresh: Read back the multifunction card information.
- Start All: Start all power supplies.
- Emergency Stop: Stop all power supplies. When the emergency stop operation is executed, automatic control is invalid.
- Manual: Start or stop the power supplies manually.
- Automatic Control: Set the auto start and stop time for the power supplies.
- Advanced: Set the time for the automatic time synchronization between the multifunction card and PC.

Monitoring Data


View the monitoring data of both multifunction card itself and its connected monitoring card.

Peripheral Device

Add peripheral devices connected to the multifunction card, including the light sensors and external 3D emitters.


Load Program

Click Refresh to view the multifunction card model, FPGA version and FPGA note.

Type "admin" to access the options for program loading.

- e. Select Load program for selected Multi-function Card or Load all programs for Multi-function Card.
- f. Click Browse to select the program package.
- g. Click Change to load the selected program.
- h. Click Exit to hide the program loading options.

8.2 Receiving Card Relay

Applications

Set the receiving card relay status to manually connect or disconnect the circuit or let the circuit automatically connect or disconnect, and reset the receiving card running time.

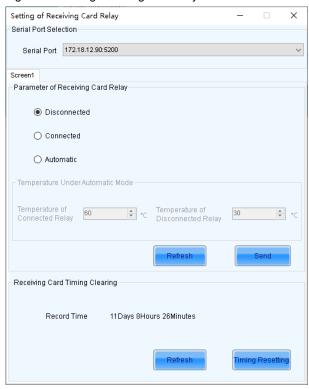
Applicable Products

- Setting the receiving card relay status: Applicable to the MRV350 receiving card
- Resetting the receiving card running time: Applicable to all receiving cards

Prerequisites

None

Related Information


When the relay is closed, the circuit is connected. When the relay is released, the circuit is disconnected.

The running time is accumulated as the receiving card works, and will not be reset after the receiving card is powered off.

Operating Procedure

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 On the menu bar, choose Settings > Receiving Card Relay.

Figure 8-4 Setting receiving card relay

Step 3 Perform the following operations as required.

- Set receiving card relay
 - Select Disconnected and click Send to disconnect the circuit.
 - Select Connected and click Send to connect the circuit.
 - Select Automatic and set the threshold temperatures for both connecting and disconnecting the relay, and then click Send.

Reset receiving card running time

Click Timing Resetting to record the receiving card running time from 0.

8.3 Screen Control

Applications

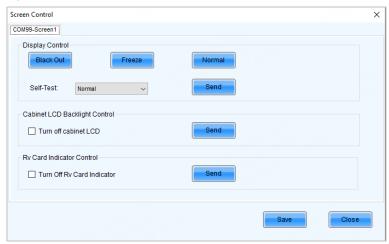
Set the screen display status. Use the test pattern to perform the screen aging test and detect problems. Control the cabinet LCD backlight status.

Applicable Products

All receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

Prerequisites

None


Related Information

None

Operating Procedure

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 Click screen control or choose Tools > Screen Control on the menu bar.

Figure 8-5 Screen control

- Step 3 Perform any of the following operations as required.
 - Set screen display

Select Black Out, Freeze or Normal. When Freeze is selected, the screen always displays the current image.

Select test pattern

Select a test pattern from the drop-down list and click **Send**. The receiving card will display the selected test pattern on the screen.

Set LCD backlight status

Select or deselect Turn off cabinet LCD and click Send.

Set receiving card indicator

Select or deselect Turn off Rv Card Indicator and click Send.

Step 4 Click Save once you are done.

8.4 Module ID Settings

Applications

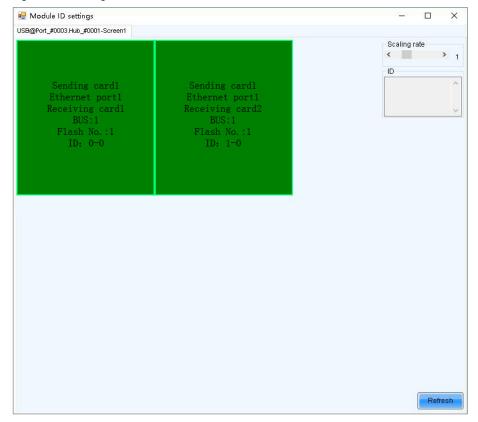
Set ID for the module containing a flash memory.

Applicable Products

The receiving cards that support module Flash or smart module

Prerequisites

The Flash arrangement is completed as described in 5.4 Set Performance Parameters.

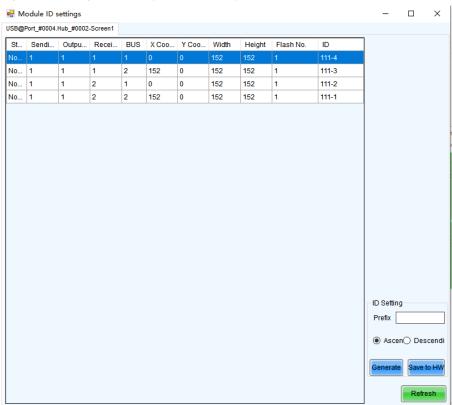

Related Information

Some modules do not support ID settings. For details, please contact NovaStar.

Operating Procedure

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 On the menu bar, choose **Tools** > **Module ID setting**.
- Step 3 Click Refresh to view the module IDs.

Figure 8-6 Viewing module ID



Step 4 Type "admin" to access the ID settings pane.

Figure 8-7 Setting module ID (regular screen)

Figure 8-8 Setting module ID (complex screen)

Step 5 Select the ID generation method and then click **Generate** to set IDs for all the modules. When manually setting the ID, for regular screens, double click a single module and set its ID in the displayed dialog box, and then click **OK**; for complex screens, double-click the cell of ID column, set the ID and click any other place of the interface.

- Prefix: Set the prefix of the module ID.
- Sort: Select the sorting type for the module IDs.
 - Z-shape: Generate module IDs from left to right for all the rows from top to bottom. The ID format is "receiving card number-module number".
 - N-shape: Generate module IDs from bottom to top for all the columns from left to right. The ID format is "receiving card number-module number".

- Inverse Z-shape: Generate module IDs from right to left for all the rows from top to bottom. The ID format is "receiving card number-module number".
- Inverse N-shape: Generate module IDs from top to bottom for all the columns from left to right. The ID format is "receiving card number-module number".
- No.: The ID format is "receiving card number-Flash number".
- Ascending: The module IDs are in ascending order.
- Descending: The module IDs are in descending order.
- By cabinet: Generate the IDs for all modules based on cabinets by Z type or N type, or number the modules by "sending card number-output port number-receiving card number-Flash number".

Step 6 After the settings are done, click Save to HW to save the configuration information to the hardware.

9 Screen Maintenance

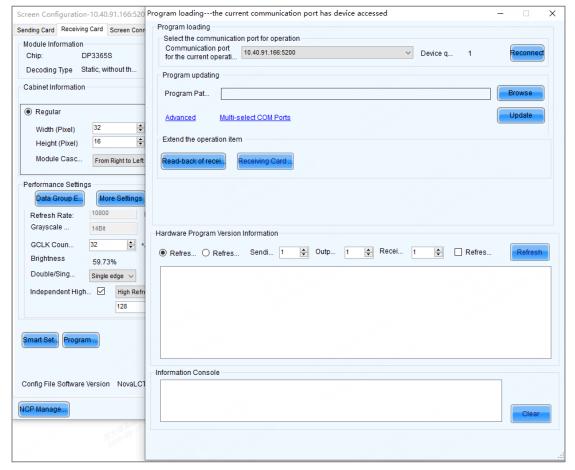
9.1 Firmware Program Update

Applications

Check the device firmware program version, and update the program.

Applicable Products

- Receiving card cloud update: Applicable to all receiving cards
- Local update: Applicable to all receiving cards and sending cards

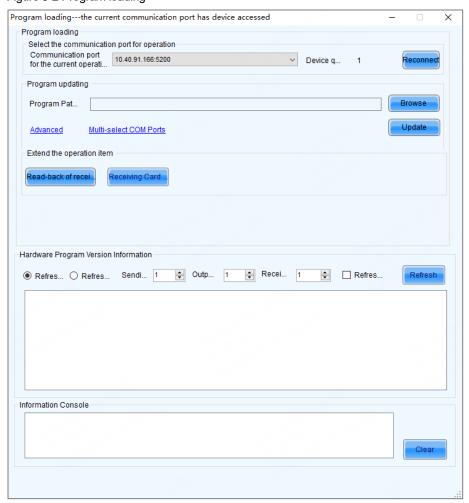

Prerequisites

- For cloud-based updates of the receiving card, the control computer must be connected to the Internet.
- To load firmware packages locally, the program update package must be prepared.

Related Information

In the **Screen Configuration** interface, click **Program Update**. In the popup window, you can either click **Receiving Card Cloud Update** to match and install the firmware package automatically, or select and load a package manually. Alternatively, you can click **Browse** to load and install the firmware package from your computer.

Figure 9-1 Program update

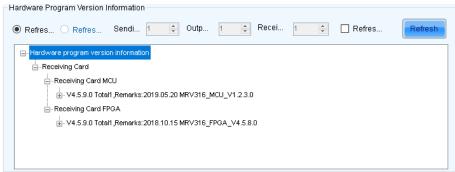


Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

Step 2 Click Program Update, or type "admin" or "123456" to open the program loading window as shown in Figure 9-2.

Figure 9-2 Program loading

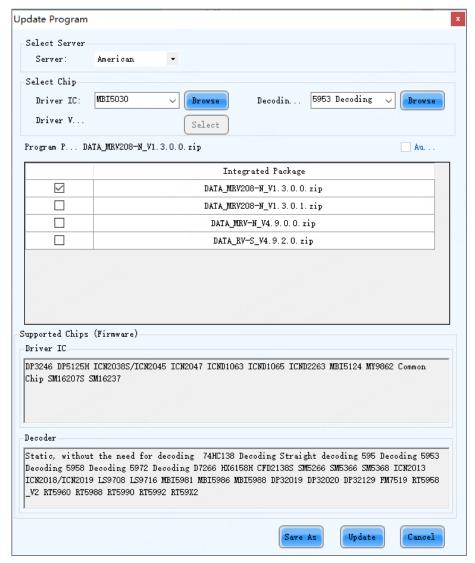

Step 3 Choose a communication port.

If you need to reconnect the multimedia player, click Reconnect.

Step 4 Specify the refreshing range and click **Refresh** to view the current program version of the hardware.

If the module has an MCU, select Refresh Module MCU to view the MCU version.

Figure 9-3 Viewing program version

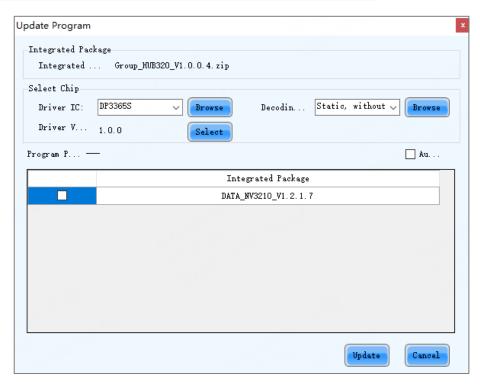


- Step 5 Perform the following operations as needed.
 - Receiving card cloud update
 - a. Click Receiving Card Cloud Update in the Extend the operation item area.
 - b. Select a server.

c. Choose the driver IC, decoding method and driver version. The system will automatically match and display the package file. If the receiving card supports V1.0.0 driver program, click Select next to Select Driver Version and select 1.0.0. If the receiving card supports V2.0.0 driver program, click Select next to Select Driver Version and select 2.0.0.

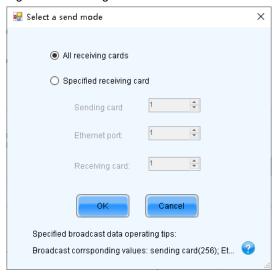
When the receiving card is connected, Auto Match is checked by default. After selecting the driver chip and decoding method, the system will automatically match and display the package file from the cloud.

- d. Check the corresponding cloud package file.
- e. Click Update.
- (Optional) Click Save As to save the package file locally.



Local update

Click **Browse**, select a program package (.img/.zip/.nuzip/.rar/.7z), and click **OK**. If you select an integrated firmware package for the receiving card (which includes firmware for multiple receiving cards), follow these steps:


In the **Update Program** interface, select the appropriate driver IC, decoding method and deriver version based on your actual requirements, then either match the package file automatically or choose it manually, and click **Update**.

- Auto match: Select Auto Match, and the software will automatically select the appropriate package file based on the receiving card model, and the specified driver IC, decoding method and deriver version.
- Manual selection: Unselect the Auto Match, and manually choose the required package file from the list.

- Step 6 Click Advanced, select the items to be updated, and click OK.
- Step 7 Click Update.
- Step 8 Choose to update the programs of all receiving cards or the specified receiving card, and then click OK.

Figure 9-4 Selecting send mode

Step 9 After the programs are updated successfully, click OK.

Note

If the receiving card supports program readback, click **Read-back of receiving card program** to save the receiving card program to a specified location.

9.2 LED Error Detection

Applications

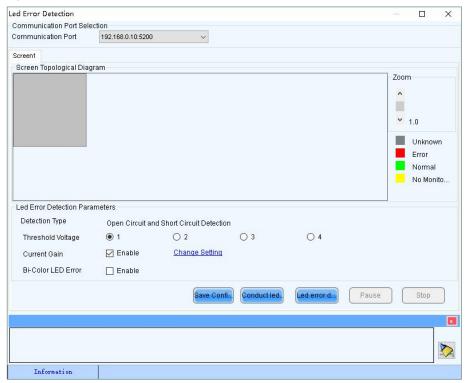
Detect the damaged LED lights and locate them on the screen.

Applicable Products

The MRV320 and MRV560 receiving cards

Prerequisites

- The module driver chip must be support LED error detection.
- The module driver chip must support 1/16 scan or below, and the MON300 monitoring card is required between the connection of module and the MRV320 or MRV560.


Related Information

The multimedia player does not support smart module monitoring.

Operating Procedure

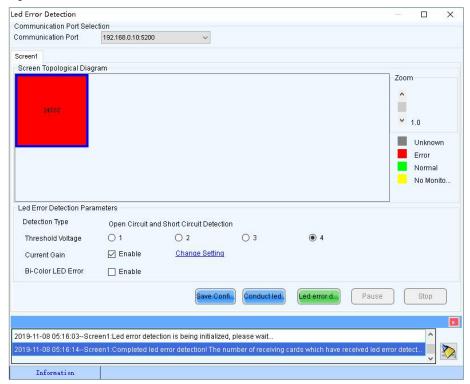

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 On the menu bar, choose Tools > Led Error Detection.

Figure 9-5 Led Error Detection

- Step 3 Set Led error detection parameters.
 - Detection Type: The detection types supported by the driver chip
 - Threshold Voltage: The threshold voltage of the driver chip, which can be set based on the information provided by the screen manufacturer
 - Current Gain: Select whether to enable the current gain function. Click Change Setting to adjust the current gain.
 - Bi-Color LED Error: Select whether to detect only the red and green LED lights.
- Step 4 Click Conduct led error detection for full screen, or select a cabinet on the screen topological diagram and click Led error detection selection.
- Step 5 After the detection is done, click **OK**.

Figure 9-6 Result of the Led error detection for the whole screen

The number displayed on the topological diagram indicates the number of the faulty LED lights. Hover the mouse over the topological diagram to view the detailed Led error detection information.

Step 6 Double click a cabinet in the topological diagram to access the interface shown in Figure 9-7.

Figure 9-7 Result of the Led error detection for all the modules

Step 7 Select a red module, and select **Red A**, **Green**, **Blue** or **Red B** (virtual red) on the right to view the faulty LED lights which are shown in black.

9.3 Reset Run Time

Applications

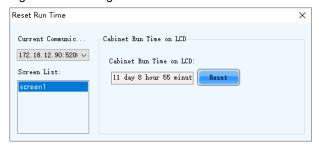
Reset the receiving card run time displayed on each cabinet LCD.

Applicable Products

All receiving cards

Prerequisites

None


Related Information

The run time is stored in the receiving card and displayed on the cabinet LCD.

Operating Procedure

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 On the menu bar, choose **Tools** > **More** > **Reset Run Time**.

Figure 9-8 Resetting run time

- Step 3 Select a screen.
- Step 4 Click Reset.

9.4 Bit Error Detection

Applications

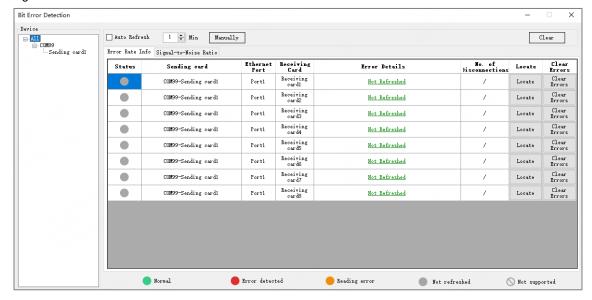
Check the bit error rate information and signal-to-noise ratio of the receiving card's Ethernet port communication.

Applicable Products

- Error rate detection: Applicable to all receiving cards.
- Ethernet disconnection count: Applicable to A10s Pro.
- Signal-to-noise ratio detection: Applicable to A10s Pro.

Prerequisites

None


Related Information

None

Operating Procedure

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 On the menu bar, choose **Tools > More > Bit Error Detection**.
- Step 3 Navigate to the Error Rate Info tab and then click Manually as shown in Figure 9-9.

Figure 9-9 Bit error detection

- Step 4 If the communication is abnormal, perform any of the following operations as required. If the communication is normal, skip this step.
 - View error details

Click the link in the Error Details column and view the detailed error information in the displayed dialog box.

Locate display area

Click Locate to view the display area on the screen.

Clear errors

Click Clear Errors to reset the error quantity to 0.

- Step 5 If the receiving card model is A10s Pro, navigate to the **Signal-to-Noise Ratio** tab, click **Manually**, and then check the detection results. If you're using a different receiving card model, you can skip this step.
- Step 6 (Optional) Select Auto Refresh and set the refreshing period.

10 Plug-in

10.1 Test Tool

Applications

Use the test patterns to check whether the screen can display the image normally and locate the problems.

Applicable Products

All receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

Prerequisites

When the display window is large, it is recommended you use an extended display to display the test pattern for easier operation of the software.

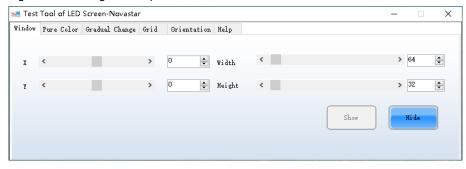
Related Information

None

Operating Procedure

Step 1 Log in to the multimedia player. For details, see 4 User Login.

Step 2 Click Test Tool or choose Plug-in > Test Tool on the menu bar.


Note

For TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro, please refer to *Test Tool User Manual* for more detailed instructions.

Step 3 Click the **Window** tab to set the test pattern size according to the screen size, as well as set the test pattern position and set to show or hide the test pattern as shown in Table 10-1.

When the test pattern needs to be displayed on the extended display, adjust the X and Y values to move the test pattern to the extended display.

Figure 10-1 Setting window parameters

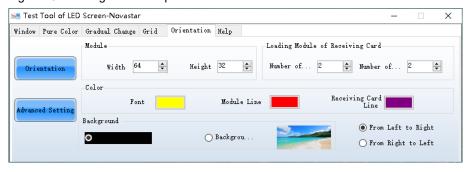

Step 4 Select the Pure Color, Gradual Change, Grid or Orientation tab to set the test pattern style.

Table 10-1 Setting test pattern

lable 10-1 Setting test pattern	
Tab Name	Function Description
Pure Color	Set a pure color test pattern.
	Select a color.
	Set the grayscale changing method.
	The grayscale changing options include Manual and Automatic . When Automatic is selected, you can set the changing speed, as well as set to start or pause the changing.
Gradual Change	Set a gradient test pattern.
	Select a color.
	Select a grayscale level.
	Set the test pattern stretching times.
	Set the gradient moving style.
	Set the gradient sequencing and direction.
	You can start or stop the moving of the gradient.
Grid	Set a test pattern that has lines.
	Select a color.
	Set the line style.
	Set the grayscale level.
	Set the line moving speed.
	Select Grid Overlaying and select another pattern to display the overlaying grid effect. Click Advanced Setting to set the background color, line width and spacing, and the test patterns that can be used in blending measurement.
	Click Ageing and the screen displays the pure red, green, blue and white in sequence, which is mainly used by the screen manufacturer.
Orientation	Set the test patterns displayed in the actual positions of the receiving cards and modules. The receiving card serial numbers, receiving card lines and module lines are displayed, which can be used to locate the specific receiving cards or modules.
	Set the module width and height.
	Set the module columns and rows in the receiving card.
	Set the colors for the receiving card serial numbers, module lines and receiving card lines.

Tab Name	Function Description
	Set the background color or background image.
	Set the receiving card numbering direction. The options include From Left to Right and From Right to Left.
	If the test pattern is not displayed, click the Orientation button to display it.
	Click Advanced Setting to set the font size and font type for the receiving card serial number, starting row number, starting column number, as well as the widths of the module and receiving card lines.

Figure 10-2 Setting orientation parameters

Note:

Click the **Help** tab to view the descriptions of the shortcut keys used in **Test Tool**.

10.2 Calculator

Applications

Open the Windows calculator for users to do the necessary calculations.

Applicable Products

N/A

Prerequisites

None

Related Information

None

Operating Procedure

On the menu bar, choose Plug-in > Calculator to open the Windows calculator.

10.3 External Program

Applications

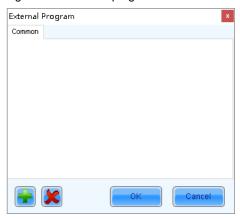
Add the shortcut icons for the commonly-used programs to NovaLCT user interface.

Applicable Products

N/A

Prerequisites

None


Related Information

None

Operating Procedure

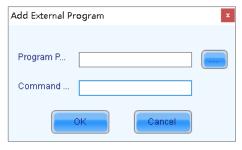

Step 1 On the menu bar, choose **Plug-in > External Program**.

Figure 10-3 External program

Step 2 Click

Figure 10-4 Adding external programs

Step 3 Select the program path and enter the command line parameter as required, and then click **OK**.

If the external program is successfully added, the shortcut icon of the program will be displayed in Figure 10-3.

Note:

Select an external program icon and click to remove the program.

Step 4 Click OK.

11 Software Settings

11.1 Configuration Information Management

Applications

Import and export the NovaLCT configuration files for quick configuration in NovaLCT.

Applicable Products

N/A

Prerequisites

None

Related Information

None

Operating Procedure

- Step 1 Log in to the multimedia player. For details, see 4 User Login.
- Step 2 On the menu bar, choose Settings > Configure Information Management.

Figure 11-1 Configuration file management

- Step 3 Perform any of the following operations as required.
 - Import Configuration

Click **Import Configuration** and select a file in .zip format, and then click **Open**.

Export Configuration

Click Export Configuration, select the file save path and enter the file name, and then click Save.

11.2 Set Main Window Starting Position

Applications

Set the coordinates of the top-left corner of the main window of NovaLCT on the desktop, and make the window display in the specified position when the software is started.

Applicable Products

N/A

Prerequisites

None

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose Settings > The Main Window Starting Position.

Figure 11-2 Setting starting position coordinates

Step 2 Set the coordinates of the top-left corner of the main window on the desktop, and click OK.

After the settings are done, the main window moves to the specified position. When next time NovaLCT is started, the main window will be displayed in the target position.

11.3 Configure the Save Function

Applications

Configure the Save function that is in the Screen Configuration dialog box.

Applicable Products

All receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro

Prerequisites

None

Related Information

None

Operating Procedure

- Step 1 On the menu bar, choose Settings > Screen Configuration Backup Settings.
- Step 2 Select an option and click Save.

Figure 11-3 Save to HW configuration

11.4 Cloud Server Configuration

Applications

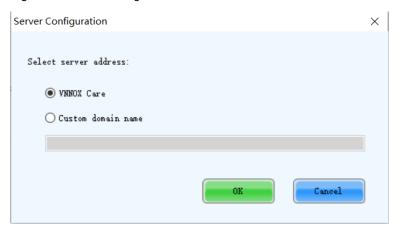
Configure the cloud server address to VNNOX Care or a custom domain name. The custom domain can only be used to restore the configuration file from the cloud when setting up the screen and does not support other cloud-based functions

Applicable Products

All receiving cards, multimedia players, TU20 Pro, TU15 Pro, SMP6 Pro, and SMP4 Pro.

Prerequisites

To configure the server address as a custom domain name, you need to have an available domain.


Related Information

None

Operating Procedure

Step 1 On the menu bar, choose **Settings** > **Server Configuration**.

Figure 11-4 Server configuration

- Step 2 Select VNNOX Care or select Custom domain name and enter you domain name.
- Step 3 Click **OK** once you are done.
- Step 4 Restart the NovaLCT for the change to take effect.

11.5 Change UI Language

Applications

Change the UI language for NovaLCT.

Applicable Products

N/A

Prerequisites

None

Related Information

NovaLCT supports Deutsch, English, Spanish, French, Japanese, Korean, Portuguese, Russian, Thai language, Traditional Chinese and Simplified Chinese.

Operating Procedure

On the menu bar, choose Language and select the target language from the sub-menu.

11.6 Obtain Help Information

Applications

Check the user manuals, update log and software information of the current version of NovaLCT, and contact online customer service.

Applicable Products

N/A

Prerequisites

None

Related Information

None

Operating Procedure

Choose Help from the menu bar and do the corresponding operations below as needed.

View User Manual

Choose User Documents and select the desired user manual.

View Update Log

Choose Update Log to view the update log in the displayed dialog box.

View Software Information

Choose **About** to view the software version and copyright information in the displayed dialog box. If needed, click **Visit Official Website** to visit the official website of NovaStar and click **Third Party License** to view the related third party license.

Contact online customer service

Choose Online Support. On the displayed page, chat with the customer service online.

11.7 Update Software

Applications

When the Internet is available, download the NovaLCT update package from the cloud and install it.

Applicable Products

N/A

Prerequisites

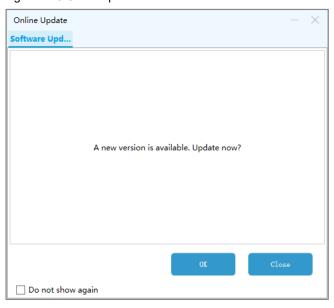
The control computer is connected to the Internet.

Related Information

None

www.novastar.tech

Operating Procedure


Step 1 From the menu bar, choose Help > Online Update.

Notes

If NovaLCT is not up to date, after NovaLCT is opened, an "Online Update" dialog will be displayed.

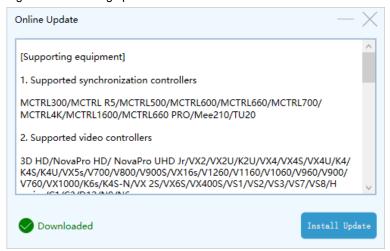

If there is an available new version, an icon is displayed in front of the **Online Update** menu name.

Figure 11-5 Online update

- Step 2 Click OK.
- Step 3 Click Get Update.
- Step 4 After the update package is downloaded, click Install Update and wait for it to complete.

Figure 11-6 Installing update

11.8 Export Log

Applications

Export the logs of NovaLCT.

Applicable Products

N/A www.novastar.tech

Prerequisites

None

Related Information

None

Operating Procedure

On the menu bar, choose **Help > Export Log**. On the pop-up window, choose a save path and click **OK**.

12 Troubleshooting

12.1 Installation Problems

12.1.1 Failed to install NovaLCT of earlier versions

Problem

The installation of NovaLCT fails when the version to be installed is earlier than the current version.

Possible Causes

None.

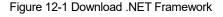
Solution

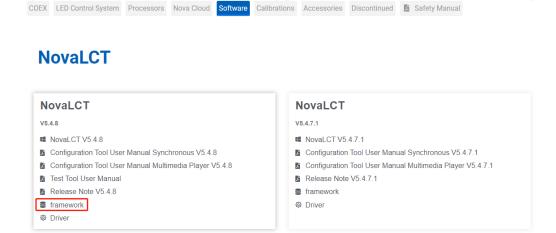
Uninstall the current version, and then install the earlier one.

12.1.2 .NET Framework is missing

Problem

When installing NovaLCT, you run into a system prompt like "To run this application, you must first install one of the following versions of the .NET Framework." (This typically appears on computers that have not previously installed NovaLCT.)


Possible Causes


The required .NET Framework version is missing on the computer where NovaLCT is installed.

Solution

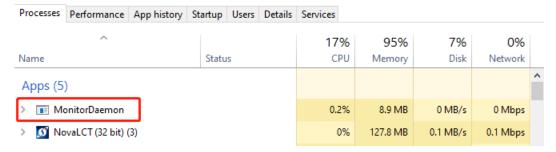
Visit NovStar's official website (www.novastar.tech) and download the required .NET Framework.

Download path: Downloads > Software > Framework

12.1.3 "DeleteFile failed" error

Problem

When installing NovaLCT, you run into a system prompt like "An error occurred while trying to replace the existing file. DeleteFile failed with code 5. Access denied."


Possible Causes

The monitoring daemon is still running after shutting down NovaLCT, causing some files to be unable to be deleted.

Solution

Open the task manager, right-click on "MonitorDaemon", select "End task" from the pop-up menu, then click "Retry" to proceed with the installation of NovaLCT.

Figure 12-2 Task manager

12.1.4 Prompts to run DPinst.exe

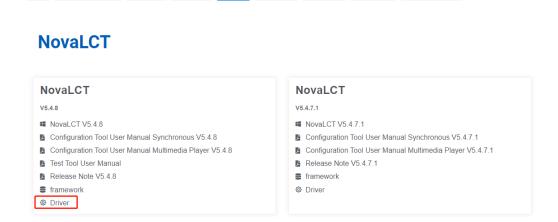
Problem

At the end of the installation process for NovaLCT, when starting the installation of the driver, you run into a system prompt like "You need to run the 64-bit version of DPinst.exe on this computer. Please contact the software developer who provided you with this software package." (This typically appears on computers that have not previously installed NovaLCT.)

Possible Causes

The required driver is missing on the computer where NovaLCT is installed.

Solution

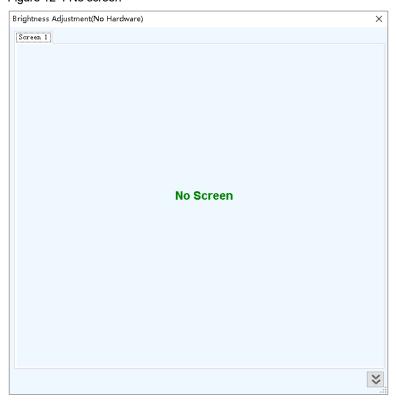

Proceed with the installation disregarding the issue at hand. Once completed, test if NovaLCT is able to connect to the device via the USB cable.

- If you are able to connect to the device with no issue, there is no need for any further action as NovaLCT can be used as intended.
- If you are unable to connect to the device, visit NovStar's official website (www.novastar.tech) and download the
 required driver. Please contact NovaStar if the problem persists after installing the driver.

Download path: Downloads > Software > Driver

Figure 12-3 Download driver

COEX LED Control System Processors Nova Cloud Software Calibrations Accessories Discontinued Safety Manual


12.2 Other Problems

12.2.1 "No Screen" displayed in NovaLCT

Problem

"No Screen" is displayed in NovaLCT as shown in Figure 12-4.

Figure 12-4 No screen

Possible Causes

Failed to read screen configuration or no screen has been configured.

Solution

- If the LED screen has been configured already, click screen Configuration and select the Screen Connection tab, and then click Read from HW to read the configurations from the LED screen.
- If the screen has not been configured yet, configure it first.

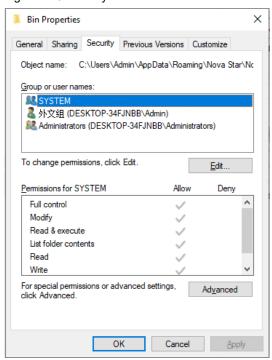
12.2.2 Permission error

Problem

After NovaLCT is installed on the system disk of the computer that runs Windows 8 or later version, some functions in NovaLCT cannot work normally.

Possible Causes

File permission denied.


Solution

Here, we use Windows 10 as an example to illustrate how to solve this problem.

Step 1 Right click the desktop shortcut of NovaLCT and select **Open file location**.

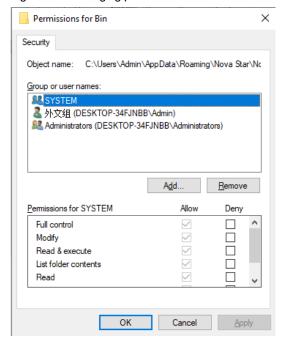

- Step 2 Go back to the upper level of current file directory, that is, "\Nova Star\NovaLCT".
- Step 3 Right click the Bin folder and select Properties.
- Step 4 Select the Security tab.

Figure 12-5 Security

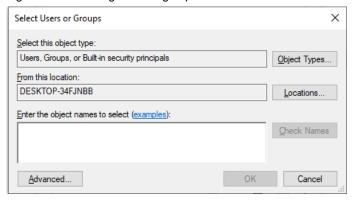

- Step 5 Check whether there is current user or **Everyone** in the **Group or user names** area.
 - Yes: Go to Step 11.
 - No: Go to Step 6.
- Step 6 Click **Edit** to open the dialog box shown in Figure 12-6.

Figure 12-6 Changing permissions

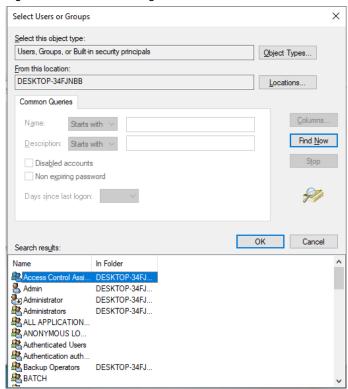

Step 7 Click **Add** to open the dialog box shown in Figure 12-7.

Figure 12-7 Selecting users or groups

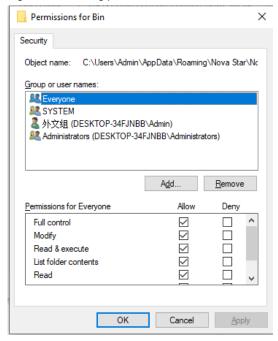

Step 8 Click **Advanced** to open the dialog box shown in Figure 12-8, and click **Find Now**.

Figure 12-8 Advanced settings

- Step 9 Select current user or **Everyone** in the search result, and click **OK**.
- Step 10 Click OK.
- Step 11 Select all for the Allow column and click OK.

Figure 12-9 Setting permissions

Step 12 Click **OK** and close the properties dialog box.

12.2.3 Failed to connect colorimeter

Problem

The colorimeter connection fails when the colorimeter is used to automatically measure the original color space of the screen.

Possible Causes

- The colorimeter connection is abnormal.
- The model of the colorimeter selected is incorrect.

Solution

Step 1 Check whether the hardware connection of the colorimeter is normal.

When the colorimeter model is CS-100A, follow the subsequent descriptions to make sure the colorimeter auto mode is turned on.

Turning on auto mode: Set switch to ON while pressing the F button. When you see a C letter on the LCD, the auto mode is turned on, which is shown in Figure 12-10.

Figure 12-10 Setting CS-100A colorimeter

- Normal: Go to Step 2.
- Abnormal: Reconnect the colorimeter and make sure the colorimeter can work normally.
- Step 2 Check whether the colorimeter model selected in NovaLCT is correct.
 - Correct: Go to Step 3.
 - Incorrect: Select the correct model.
- Step 3 In NovaLCT, click Connect to reconnect the colorimeter.

12.2.4 No available server for VNNOX Care

Problem

No available server from the dropdown list for VNNOX Care services.

Figure 12-11 VNNOX Care services

Possible Causes

The network or antivirus software may be the cause of the issue.

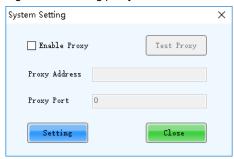
Solution

You can try the following methods to resolve this issue:

- Disable your computer's firewall or your company's network firewall and try again. Or try from a different computer if the problem persists.
- Uninstall the antivirus software (release the quarantined files) and reinstall NovaLCT.

13 FAQs

13.1 How do I set the proxy when NovaLCT needs to access WAN network?


Question

When NovaLCT in LAN network needs to access WAN network, how to set the proxy?

Answer

Step 1 On the taskbar, right click and choose System Setting.

Figure 13-1 Setting proxy

- Step 2 Select Enable Proxy.
- Step 3 Enter the proxy address and port.
- Step 4 Click Test Proxy.
- Step 5 After the test succeeds, click **Setting**.

Copyright © 2025 Xi'an NovaStar Tech Co., Ltd. All Rights Reserved.

No part of this document may be copied, reproduced, extracted or transmitted in any form or by any means without the prior written consent of Xi'an NovaStar Tech Co., Ltd.

Trademark

NOVA 5TAR is a trademark of Xi'an NovaStar Tech Co., Ltd.

Statement

Thank you for choosing NovaStar's product. This document is intended to help you understand and use the product. For accuracy and reliability, NovaStar may make improvements and/or changes to this document at any time and without notice. If you experience any problems in use or have any suggestions, please contact us via the contact information given in this document. We will do our best to solve any issues, as well as evaluate and implement any suggestions.

Official website www.novastar.tech

Technical support support@novastar.tech