

A8s Pro

Receiving Card

Specifications

Change History

Document Version	Release Date	Description
V1.3.1	2024-07-10	Updated the dimensions diagram.
V1.3.0	2024-05-22	Added NCP dual backup.
		Added 4-LED sub-pixel pin diagram.
		Updated the descriptions for thermal compensation,
		image booster, and seam correction on mobile
		phones.
V1.2.0	2024-01-23	Added the description for seam correction.
V1.1.2	2023-12-30	Updated product feature descriptions.
V1.1.1	2023-12-12	Added thermal compensation
		Updated the description for the Mapping function

Introduction

The A8s Pro is a high-end small receiving card developed by Xi'an NovaStar Tech Co., Ltd. (hereinafter referred to as NovaStar). A single A8s Pro supports resolutions up to 512×512@60Hz.

This receiving card supports the exclusive Multi-layer Grayscale Calibration, Thermal Compensation 2.0, and Image Booster 2.1 technologies of NovaStar. With other various functions, such as HDR, Pixel Level Brightness and Chroma Calibration, Seam Correction with Mobile Phones, Quick Adjustment of Dark or Bright Lines, Low Latency, 3D, Individual Gamma Adjustment for RGB, 90° Image Rotation, and Free Image Rotation, it can greatly improve the brightness, grayscale and color performance from every aspect, offering users an ultimate visual experience with a uniform, smooth and lifelike image.

The A8s Pro uses high-density connectors for communication to limit the effects of dust and vibration, resulting in high stability. It supports up to 40 groups of parallel RGB data, 64 groups of serial data (expandable to 128 groups of serial data), or 30 groups of 4-LED sub-pixel data. Its reserved pins allow for custom functions of users. Thanks to its EMC Class B compliant hardware design, the A8s Pro has improved electromagnetic compatibility and is suitable for various on-site setups that have high requirements.

Certifications

RoHS, EMC Class B

If the product does not have the relevant certifications required by the countries or regions where it is to be sold, please contact NovaStar to confirm or address the problem.

Otherwise, the customer shall be responsible for the legal risks caused or NovaStar has the right to claim compensation.

Features

Improvements to Display Effect

Multi-layer Grayscale Calibration

Work with NovaStar's high-precision calibration system to generate unique calibration coefficients for low-grayscale image parts to ensure their uniformity while supporting the traditional brightness and chroma calibration.

• Thermal Compensation 2.0

Work with NovaStar's high-precision calibration system to precisely collect the thermal distribution data of LED cabinets and generate unique thermal compensation data for each pixel of the cabinets, effectively eliminating the cabinet or module level # shaped bars caused by uneven thermal distribution.

- Image Booster 2.1 (Effects depend on driver IC)
 - Color Management: Support standard (Rec.709 / DCI-P3 / Rec.2020) and custom color gamuts, enabling more precise colors on the screen.
 - Precise Grayscale: Individually correct the 65,536 levels of grayscale (16bit) of the driver IC to fix the display problems at low grayscale conditions, such as brightness spikes, brightness dips, color cast and mottling. This function can also better assist other display technologies, such as 22bit+ and individual gamma adjustment for RGB, allowing for a smoother and uniform image.
 - 22bit+: Improve LED screen grayscale by 64 times, with adjustable dithering range and low-gray dithering effect, preventing grayscale loss at low brightness and delivering richer details in dark areas for a more refined display.

HDR

Support HDR10 and comply with the SMPTE ST 2084 and SMPTE ST 2086 standards.

- Support HLG.
- Pixel Level Brightness and Chroma Calibration

Work with NovaStar's high-precision calibration system to calibrate the brightness and chroma of each pixel, effectively eliminating differences and enabling high consistency for both brightness and chroma.

• Seam Correction with Mobile Phones

The brightness discrepancies in seams caused by splicing modules or cabinets can be automatically or manually adjusted via mobile phone software, enhancing the overall visual experience. (Requires working with the TU series products)

Quick Adjustment of Dark or Bright Lines

The different brightness of seams caused by splicing of modules or cabinets can be corrected to improve the visual experience. The correction is easy and takes effect immediately.

Low Latency

The latency of video source on the receiving card end can be reduced to 1 frame (only when using modules with driver IC with built-in RAM).

• 3D

Work with the controller that supports 3D function to enable 3D output.

Individual Gamma Adjustment for RGB

Working with NovaLCT (V5.2.0 or later) and the controller that supports this function, the receiving card supports individual adjustment to red gamma, green gamma and blue gamma, which can effectively control image non-uniformity at low grayscale conditions and white balance offset, allowing for a more realistic image.

• 90° Image Rotation

The display image can be rotated in multiples of 90° (0°/90°/180°/270°).

• Free Image Rotation

Work with SmartLCT and the MCTRL R5 LED display controller to support image rotation at any angle.

Improvements to Maintainability

• Smart Module (dedicated firmware required)

Work with the smart module to support module ID management, storage of calibration coefficients and module parameters, monitoring of module temperature, voltage and flat cable communication status, LED error detection, and recording of the module run time.

Automatic Module Calibration

After a new module with flash memory is installed to replace the old one, the calibration coefficients stored in the flash memory can be automatically uploaded to the receiving card when it is powered on, which ensures unchanged uniform display brightness and chroma.

Quick Uploading of Calibration Coefficients

Upload the calibration coefficients quickly to the receiving cards to improve efficiency.

• Module Flash Management

For modules with flash memory, the information stored in the memory can be managed. The calibration coefficients and module ID can be stored and read back.

One-click to Apply Calibration Coefficients in Module Flash

For modules with flash memory, when the Ethernet cable is disconnected, users can hold down the self-test button on the cabinet to upload the calibration coefficients in the memory of the module to the receiving card.

Mapping 1.1

The cabinets can display the controller number, receiving card number, and Ethernet port information, allowing users to easily obtain the locations and connection topology of receiving cards.

Settings of a Stored Image in the Receiving Card

The image displayed during startup, or displayed when the Ethernet cable is disconnected or there is no video signal can be customized.

Temperature and Voltage Monitoring

Real-time monitoring of the temperature and voltage of the receiving card, without the need for other external devices.

Cabinet LCD

The LCD module of the cabinet can display the temperature, voltage, single run time and total run time of the receiving card.

Bit Error Detection

Real-time monitoring of the communication of the Ethernet port on the receiving card. It records the number of error data packets, which helps users identify faults and troubleshoot network communication issues.

• Status Detection of Dual Power Supplies

When two power supplies are used, their working status can be detected.

• Firmware Program Readback

The receiving card firmware program can be read back and saved to the local computer.

• Configuration Parameter Readback

The receiving card configuration parameters can be read back and saved to the local computer.

• LVDS Transmission (dedicated firmware required)

Low-voltage differential signaling (LVDS) transmission is used to reduce the number of data cables from the hub board to module, increasing the transmission distance and improving the signal transmission quality.

Improvements to Reliability

Dual NCP Backup

The NCP file is stored in the application area and factory area of the receiving card at the same time. Typically, the NCP file in the application area is used. However, during a factory reset, the NCP file can be retrieved from the factory area.

Dual Card Backup and Status Monitoring

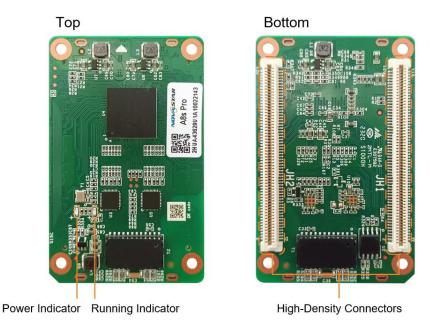
In an application requiring high reliability, two receiving cards can be mounted onto a single hub board for backup. When the primary card fails, the backup card can serve immediately to ensure uninterrupted operation of the display.

The working status of the primary and backup receiving cards can be monitored inNovaLCT V5.2.0 or later.

Loop Backup

The receiving card and controller form a loop via the primary and backup line connections. When a fault occurs at a location of the lines, the screen can still display the image normally.

Dual Backup of Configuration Parameters


The receiving card configuration parameters are stored in the application area and factory area of the receiving card at the same time. Users usually use the configuration parameters in the application area. If necessary, users can restore the configuration parameters in the factory area to the application area.

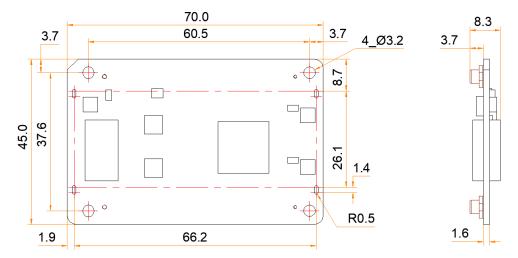
Dual Program Backup

Two copies of firmware program are stored in the receiving card at the factory to avoid the problem that the receiving card may get stuck abnormally during program update.

Appearance

All product pictures shown in this document are for illustration purpose only. Actual product may vary.

Indicators


Indicator	Color	Status	Description
Running indicator	Green Flashing once every 1s		The receiving card is functioning normally. Ethernet cable connection is normal, and video source input is available.
		Flashing once every 3s	Ethernet cable connection is abnormal.
	Flas		Ethernet cable connection is normal, but video source input is unavailable.
		Flashing once every 0.2s	The receiving card failed to load the program in the application area and is now using the backup program.
		Flashing 8 times	A redundancy switchover occurred on the

Indicator	Color	Status	Description
		every 0.5s	Ethernet port and the loop backup has taken effect.
Power indicator	Red	Always on	The power input is normal.

Dimensions

The board thickness is not greater than 2.0 mm, and the total thickness (board thickness + thickness of components on the top and bottom sides) is not greater than 9.0 mm. Ground connection (GND) is enabled for mounting holes.

Tolerance: ±0.3 Unit: mm

The distance between outer surfaces of the product and hub boards after their high-density connectors fit together is 5.0 mm. A 5.0 mm copper pillar is recommended.

To make molds or trepan mounting holes, please contact NovaStar for a higher-precision structural drawing.

Pins

40 Groups of Parallel RGB Data

JH1	JH1							
1	GND	1	2	GND	/			
/	B38	3	4	NC	/			
/	G38	5	6	NC	/			
1	R38	7	8	NC	/			
/	B37	9	10	NC	/			
/	G37	11	12	NC	/			
/	R37	13	14	NC	/			
/	B36	15	16	NC	/			
/	G36	17	18	NC	/			
1	R36	19	20	NC	/			
/	GND	21	22	NC	/			

JH1							
1	NC	23	24	NC	1		
1	GND	25	26	GND	1		
1	G17	27	28	R17	/		
/	R18	29	30	B17	/		
/	B18	31	32	G18	/		
/	G19	33	34	R19	/		
/	R20	35	36	B19	/		
/	B20	37	38	G20	/		
/	GND	39	40	GND	/		
/	G21	41	42	R21	/		
1	R22	43	44	B21	/		
1	B22	45	46	G22	/		
/	G23	47	48	R23	/		
1	R24	49	50	B23	/		
1	B24	51	52	G24	/		
1	GND	53	54	GND	/		
1	G25	55	56	R25	/		
1	R26	57	58	B25	/		
1	B26	59	60	G26	1		
1	G27	61	62	R27	/		
1	R28	63	64	B27	1		
1	B28	65	66	G28	1		
1	GND	67	68	GND	1		
1	G29	69	70	R29	1		
/	R30	71	72	B29	1		
1	B30	73	74	G30	/		

JH1					
/	G31	75	76	R31	/
1	R32	77	78	B31	1
1	B32	79	80	G32	1
/	GND	81	82	GND	1
/	RFU4	83	84	RFU3	1
/	RFU6	85	86	RFU5	1
/	RFU8	87	88	RFU7	1
1	RFU10	89	90	RFU9	1
1	RFU12	91	92	RFU11	1
1	RFU14	93	94	RFU13	1
1	GND	95	96	GND	/
1	RFU16	97	98	RFU15	1
1	RFU18	99	100	RFU17	/
1	G34	101	102	NC	/
/	R34	103	104	B35	1
1	B33	105	106	G35	/
/	G33	107	108	R35	1
1	GND	109	110	GND	/
1	GND	111	112	GND	/
1	R33	113	114	B34	1
1	EXT_5V	115	116	EXT_5V	1
1	EXT_5V	117	118	EXT_5V	1
1	EXT_5V	119	120	EXT_5V	1
JH2					
Chassis ground	Eth_Sheild	1	2	Eth_Sheild	Chassis ground
Chassis ground	Eth_Sheild	3	4	Eth_Sheild	Chassis ground

JH1								
/	NC	5	6	NC	/			
/	NC	7	8	NC	/			
Gigabit Ethernet	Port1_T0+	9	10	Port2_T0+	Gigabit Ethernet			
port	Port1_T0-	11	12	Port2_T0-	port			
	NC	13	14	NC				
	Port1_T1+	15	16	Port2_T1+				
	Port1_T1-	17	18	Port2_T1-				
	NC	19	20	NC				
	Port1_T2+	21	22	Port2_T2+				
	Port1_T2-	23	24	Port2_T2-				
	NC	25	26	NC				
	Port1_T3+	27	28	Port2_T3+				
	Port1_T3-	29	30	Port2_T3-				
/	NC	31	32	NC	/			
Tri-color LED (Reserved)	STA_LEDB-	33	34	STA_LEDR-	Tri-color LED (Reserved)			
Test button	Input_KEY0	35	36	STA_LEDG-	Running indicator (active low) Tri-color LED (Reserved)			
/	GND	37	38	GND	/			
Line decoding signal	А	39	40	DCLK1	Shift clock output 1			
Line decoding signal	В	41	42	DCLK2	Shift clock output 2			
Line decoding signal	С	43	44	LAT	Latch signal output			
Line decoding	D	45	46	CTRL	Afterglow control			

JH1							
signal					signal		
Line decoding signal	Е	47	48	OE_RED	Display enable signal		
Display enable signal	OE_BLUE	49	50	OE_GREEN	Display enable signal		
1	GND	51	52	GND	/		
1	G1	53	54	R1	/		
/	R2	55	56	B1	/		
/	B2	57	58	G2	/		
/	G3	59	60	R3	/		
/	R4	61	62	В3	/		
/	B4	63	64	G4	/		
/	GND	65	66	GND	/		
/	G5	67	68	R5	/		
/	R6	69	70	B5	/		
/	B6	71	72	G6	/		
/	G7	73	74	R7	/		
/	R8	75	76	B7	/		
/	B8	77	78	G8	/		
/	GND	79	80	GND	/		
/	G9	81	82	R9	/		
/	R10	83	84	В9	/		
1	B10	85	86	G10	1		
/	G11	87	88	R11	1		
1	R12	89	90	B11	1		
1	B12	91	92	G12	/		

JH1	JH1							
1	GND	93	94	GND	1			
/	G13	95	96	R13	/			
1	R14	97	98	B13	/			
/	B14	99	100	G14	/			
/	G15	101	102	R15	/			
1	R16	103	104	B15	/			
1	B16	105	106	G16	/			
1	GND	107	108	GND	/			
/	NC	109	110	NC	/			
1	B39	111	112	B40	/			
1	G39	113	114	G40	/			
/	R39	115	116	R40	1			
1	GND	117	118	GND	1			
/	GND	119	120	GND	1			

64 Groups of Serial Data

JH1							
1	GND	1	2	GND	1		
1	NC	3	4	NC	1		
1	NC	5	6	NC	1		
/	NC	7	8	NC	/		
/	NC	9	10	NC	/		
/	NC	11	12	NC	/		
/	NC	13	14	NC	/		
/	NC	15	16	NC	/		
/	NC	17	18	NC	/		
/	NC	19	20	NC	/		
/	GND	21	22	NC	/		
/	NC	23	24	NC	/		
/	GND	25	26	GND	/		

JH1							
/	Data50	27	28	Data49	/		
/	Data52	29	30	Data51	/		
/	Data54	31	32	Data53	/		
/	Data56	33	34	Data55	/		
/	Data58	35	36	Data57	/		
/	Data60	37	38	Data59	/		
/	GND	39	40	GND	/		
/	Data62	41	42	Data61	/		
/	Data64	43	44	Data63	/		
/	NC	45	46	NC	/		
/	NC	47	48	NC	/		
/	NC	49	50	NC	/		
/	NC	51	52	NC	/		
/	GND	53	54	GND	/		
/	NC	55	56	NC	/		
/	NC	57	58	NC	/		
/	NC	59	60	NC	1		
/	NC	61	62	NC	/		
/	NC	63	64	NC	/		
/	NC	65	66	NC	/		
/	GND	67	68	GND	1		
/	NC	69	70	NC	1		
/	NC	71	72	NC	/		
/	NC	73	74	NC	1		
/	NC	75	76	NC	1		
1	NC	77	78	NC	1		

JH1							
/	NC	79	80	NC	1		
/	GND	81	82	GND	/		
/	RFU4	83	84	RFU3	1		
/	RFU6	85	86	RFU5	1		
/	RFU8	87	88	RFU7	1		
/	RFU10	89	90	RFU9	1		
1	RFU12	91	92	RFU11	1		
1	RFU14	93	94	RFU13	1		
1	GND	95	96	GND	1		
1	RFU16	97	98	RFU15	1		
/	RFU18	99	100	RFU17	/		
/	NC	101	102	NC	1		
/	NC	103	104	NC	1		
/	NC	105	106	NC	/		
/	NC	107	108	NC	/		
/	GND	109	110	GND	/		
/	GND	111	112	GND	/		
/	NC	113	114	NC	/		
/	EXT_5V	115	116	EXT_5V	/		
/	EXT_5V	117	118	EXT_5V	/		
/	EXT_5V	119	120	EXT_5V	/		
JH2							
Chassis ground	Eth_Sheild	1	2	Eth_Sheild	Chassis ground		
Chassis ground	Eth_Sheild	3	4	Eth_Sheild	Chassis ground		
1	NC	5	6	NC	1		
/	NC	7	8	NC	/		

JH1					
Gigabit	Port1_T0+	9	10	Port2_T0+	Gigabit Ethernet
Ethernet port	Port1_T0-	11	12	Port2_T0-	port
	NC	13	14	NC	
	Port1_T1+	15	16	Port2_T1+	
	Port1_T1-	17	18	Port2_T1-	
	NC	19	20	NC	
	Port1_T2+	21	22	Port2_T2+	
	Port1_T2-	23	24	Port2_T2-	
	NC	25	26	NC	
	Port1_T3+	27	28	Port2_T3+	
	Port1_T3-	29	30	Port2_T3-	
/	NC	31	32	NC	1
Tri-color LED (Reserved)	STA_LEDB-	33	34	STA_LEDR-	Tri-color LED (Reserved)
Test button	Input_KEY0	35	36	STA_LEDG-	Running indicator (active low) Tri-color LED (Reserved)
/	GND	37	38	GND	1
Line decoding signal	А	39	40	DCLK1	Shift clock output
Line decoding signal	В	41	42	DCLK2	Shift clock output 2
Line decoding signal	С	43	44	LAT	Latch signal output
Line decoding signal	D	45	46	CTRL	Afterglow control signal
Line decoding	Е	47	48	OE_RED	Display enable

JH1					
signal					signal
Display enable signal	OE_BLUE	49	50	OE_GREEN	Display enable signal
1	GND	51	52	GND	1
/	Data2	53	54	Data1	1
1	Data4	55	56	Data3	1
/	Data6	57	58	Data5	1
/	Data8	59	60	Data7	/
/	Data10	61	62	Data9	/
1	Data12	63	64	Data11	/
1	GND	65	66	GND	/
/	Data14	67	68	Data13	/
/	Data16	69	70	Data15	/
/	Data18	71	72	Data17	/
/	Data20	73	74	Data19	/
/	Data22	75	76	Data21	1
/	Data24	77	78	Data23	/
/	GND	79	80	GND	/
/	Data26	81	82	Data25	/
/	Data28	83	84	Data27	/
1	Data30	85	86	Data29	/
/	Data32	87	88	Data31	1
/	Data34	89	90	Data33	1
/	Data36	91	92	Data35	1
/	GND	93	94	GND	/
1	Data38	95	96	Data37	/

JH1					
/	Data40	97	98	Data39	/
/	Data42	99	100	Data41	1
/	Data44	101	102	Data43	1
/	Data46	103	104	Data45	1
/	Data48	105	106	Data47	1
/	GND	107	108	GND	1
/	NC	109	110	NC	1
/	NC	111	112	NC	1
/	NC	113	114	NC	1
/	NC	115	116	NC	1
/	GND	117	118	GND	1
/	GND	119	120	GND	/

4-LED Sub-pixel Data

JH1					
1	GND	1	2	GND	/
1	G29	3	4	NC	/
1	R29	5	6	NC	/
1	V28	7	8	NC	/
1	B28	9	10	NC	/
1	G28	11	12	NC	/
1	R28	13	14	NC	/
1	V27	15	16	NC	/
1	B27	17	18	NC	/
1	G27	19	20	NC	/
1	GND	21	22	NC	1

JH1					
1	NC	23	24	NC	/
/	GND	25	26	GND	/
1	G13	27	28	R13	/
/	V13	29	30	B13	/
1	G14	31	32	R14	/
1	V14	33	34	B14	/
1	G15	35	36	R15	/
1	V15	37	38	B15	/
1	GND	39	40	GND	/
1	G16	41	42	R16	/
/	V16	43	44	B16	/
1	G17	45	46	R17	/
1	V17	47	48	B17	/
1	G18	49	50	R18	/
1	V18	51	52	B18	/
1	GND	53	54	GND	/
1	G19	55	56	R19	/
1	V19	57	58	B19	/
1	G20	59	60	R20	/
1	V20	61	62	B20	/
1	G21	63	64	R21	1
1	V21	65	66	B21	/
1	GND	67	68	GND	/
1	G22	69	70	R22	1
1	V22	71	72	B22	/
1	G23	73	74	R23	/

JH1					
/	V23	75	76	B23	/
1	G24	77	78	R24	1
1	V24	79	80	B24	1
1	GND	81	82	GND	1
1	RFU4	83	84	RFU3	1
1	RFU6	85	86	RFU5	1
/	RFU8	87	88	RFU7	1
1	RFU10	89	90	RFU9	1
1	RFU12	91	92	RFU11	1
1	RFU14	93	94	RFU13	1
1	GND	95	96	GND	1
1	RFU16	97	98	RFU15	1
1	RFU18	99	100	RFU17	1
1	R26	101	102	NC	1
/	V25	103	104	R27	1
1	B25	105	106	V26	1
/	G25	107	108	B26	1
/	GND	109	110	GND	1
/	GND	111	112	GND	/
1	R25	113	114	G26	1
/	EXT_5V	115	116	EXT_5V	1
/	EXT_5V	117	118	EXT_5V	1
/	EXT_5V	119	120	EXT_5V	1
JH2					
Chassis ground	Eth_Sheild	1	2	Eth_Sheild	Chassis ground
Chassis ground	Eth_Sheild	3	4	Eth_Sheild	Chassis ground

JH1					
/	NC	5	6	NC	/
/	NC	7	8	NC	/
Gigabit Ethernet	Port1_T0+	9	10	Port2_T0+	Gigabit Ethernet
port	Port1_T0-	11	12	Port2_T0-	port
	NC	13	14	NC	
	Port1_T1+	15	16	Port2_T1+	
	Port1_T1-	17	18	Port2_T1-	
	NC	19	20	NC	
	Port1_T2+	21	22	Port2_T2+	
	Port1_T2-	23	24	Port2_T2-	
	NC	25	26	NC	
	Port1_T3+	27	28	Port2_T3+	
	Port1_T3-	29	30	Port2_T3-	
/	NC	31	32	NC	/
Tri-color LED (Reserved)	STA_LEDB-	33	34	STA_LEDR-	Tri-color LED (Reserved)
Test button	Input_KEY0	35	36	STA_LEDG-	Running indicator (active low) Tri-color LED (Reserved)
/	GND	37	38	GND	/
Line decoding signal	А	39	40	DCLK1	Shift clock output 1
Line decoding signal	В	41	42	DCLK2	Shift clock output 2
Line decoding signal	С	43	44	LAT	Latch signal output
Line decoding	D	45	46	CTRL	Afterglow control

JH1					
signal					signal
Line decoding signal	Е	47	48	OE_RED	Display enable signal
Display enable signal	OE_BLUE	49	50	OE_GREEN	Display enable signal
1	GND	51	52	GND	/
1	G1	53	54	R1	/
/	V1	55	56	B1	/
/	G2	57	58	R2	/
1	V2	59	60	B2	/
1	G3	61	62	R3	/
1	V3	63	64	В3	/
/	GND	65	66	GND	/
/	G4	67	68	R4	/
/	V4	69	70	B4	/
1	G5	71	72	R5	/
1	V5	73	74	B5	/
/	G6	75	76	R6	/
/	V6	77	78	B6	/
1	GND	79	80	GND	/
1	G7	81	82	R7	/
1	V7	83	84	В7	/
1	G8	85	86	R8	1
1	V8	87	88	B8	/
1	G9	89	90	R9	1
1	V9	91	92	В9	/

JH1					
1	GND	93	94	GND	/
1	G10	95	96	R10	/
1	V10	97	98	B10	/
/	G11	99	100	R11	/
1	V11	101	102	B11	/
1	G12	103	104	R12	/
/	V12	105	106	B12	/
/	GND	107	108	GND	/
/	NC	109	110	NC	/
1	R30	111	112	V30	/
/	V29	113	114	B30	/
1	B29	115	116	G30	/
1	GND	117	118	GND	1
1	GND	119	120	GND	1

The recommended power input is 5.0 V.

OE_RED, OE_GREEN and OE_BLUE are display enable signals. When RGB are not controlled separately, use OE_RED. When the PWM chip is used, they are used as GCLK signals. In the mode of 128 groups of serial data, Data65-Data128 are multiplexed into Data1-Data64, respectively.

Reference Design for Extended Functions

Pins for Extended Functions					
Pin	Recommended Module Flash Pin	Pin			
RFU3	HUB_CODE0	Flash control pin 1			
RFU4	HUB_SPI_CLK	Clock signal of serial pin			
RFU5	HUB_CODE1	Flash control pin 2			

Pins for Extended Functions				
RFU6	HUB_SPI_CS	CS signal of serial pin		
RFU7	HUB_CODE2	Flash control pin 3		
RFU8	HUB_SPI_MOSI	Module Flash data storage input		
RFU9	HUB_CODE3	Flash control pin 4		
RFU10	HUB_SPI_MISO	Module Flash data storage output		
RFU11	HUB_H164_CSD	74HC164 data signal		
RFU12	/	/		
RFU13	HUB_H164_CLK	74HC164 clock signal		
RFU14	POWER_STA1	Dual power supply detection signal 1		
RFU15	MS_DATA	Dual card backup connection signal		
RFU16	POWER_STA2	Dual power supply detection signal 2		
RFU17	MS_ID	Dual card backup identifier signal		
RFU18	HUB_CODE4	Flash control pin 5		

Specifications

Maximum Resolution	512×512@60Hz			
Electrical	Input voltage	DC 3.8 V to 5.5 V		
Specifications	Rated current	0.5 A		
	Rated power consumption	2.5 W		
Operating	Temperature	-20°C to +70°C		
Environment	Humidity	10% RH to 90% RH, non-condensing		
Storage Environment	Temperature	-25°C to +125°C		

	Humidity	0% RH to 95% RH, non-condensing
Physical Specifications	Dimensions	70.0 mm × 45.0 mm × 8.3 mm
	Net weight	17.2 g
		Note: It is the weight of a single
		receiving card only.
Packing Information	Packing specifications	Each receiving card is packaged in a blister pack. Each packing box contains 80 receiving cards.
	Packing box dimensions	378.0 mm × 190.0 mm × 120.0 mm

The amount of current and power consumption may vary depending on various factors such as product settings, usage, and environment.

Copyright

Copyright © 2024 Xi'an NovaStar Tech Co., Ltd. All Rights Reserved.

No part of this document may be copied, reproduced, extracted or transmitted in any form or by any means without the prior written consent of Xi'an NovaStar Tech Co., Ltd.

Trademark

NOVA STAR is a trademark of Xi'an NovaStar Tech Co., Ltd.

Statement

Thank you for choosing NovaStar's product. This document is intended to help you understand and use the product. For accuracy and reliability, NovaStar may make improvements and/or changes to this document at any time and without notice. If you experience any problems in use or have any suggestions, please contact us via the contact information given in this document. We will do our best to solve any issues, as well as evaluate and implement any suggestions.

Official website www.novastar.tech |Technical support |support@novastar.tech