NovaLCT
LED Configuration Tool
for Synchronous Control System
V5.3.1

User Manual
Contents

1 Software Introduction ... 1
2 Software Installation ... 2
3 Device Connection .. 3
 3.1 Connecting PC to Sending Card ... 3
 3.2 Connecting NovaLCT to Sending Card .. 3
4 User Login .. 5
5 Screen Configuration .. 6
 5.1 Loading Configuration File ... 6
 5.2 Configuring Screen Manually .. 7
 5.2.1 Setting Input Source ... 7
 5.2.2 Lighting a Screen ... 9
 5.2.3 Connecting Screen ... 21
 5.3 Setting Redundancy .. 25
 5.4 Enabling 3D ... 27
 5.5 Setting Working Mode .. 30
 5.6 Setting Performance Parameters .. 32
6 Brightness and Chroma Adjustment ... 39
 6.1 Calibration .. 39
 6.1.1 Setting Online Calibration Parameters ... 39
 6.1.2 Getting Average Coefficients ... 40
 6.1.3 Managing Calibration Coefficients .. 41
 6.1.4 Managing Double Calibration Coefficients ... 45
 6.2 Adjusting Brightness ... 46
 6.2.1 Adjusting Brightness Manually ... 46
 6.2.2 Adjusting Brightness Automatically ... 51
 6.3 Adjusting Multi-batch Cabinets .. 54
 6.4 Adjusting Dark or Bright Lines ... 59
 6.5 Correcting Brighter Pixels ... 62
 6.6 Setting Advanced Color .. 63
 6.7 Adjusting Screen Effect ... 67
 6.8.1 Screen Calibration ... 69
 6.8.2 Quick Setting ... 74
7 Screen Monitoring ... 76
 7.1 Registering Screens with iCare .. 76
 7.2 Monitoring Hardware ... 77
 7.2.1 Monitoring .. 77
 7.2.2 Monitoring (Trial) .. 82
8 Screen Management ... 88
 8.1 Multi-function Card Management .. 88
 8.2 Multiple-screen Management .. 93
 8.3 Prestore Screen ... 95
 8.4 Receiving Card Relay ... 97
 8.5 Configuration Information Management ... 98
 8.6 Screen Control ... 98
 8.7 Controller Cabinet Configuration File Import ... 100
 8.8 Video Control ... 102
 8.9 Module ID Settings .. 104
 8.10 Sending Card Relay Settings ... 106
9 Screen Maintenance ... 107
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Hardware Program Update</td>
<td>107</td>
</tr>
<tr>
<td>9.2</td>
<td>Led Error Detection</td>
<td>109</td>
</tr>
<tr>
<td>9.3</td>
<td>Reset Run Time</td>
<td>111</td>
</tr>
<tr>
<td>9.4</td>
<td>Bit Error Detection</td>
<td>112</td>
</tr>
<tr>
<td>9.5</td>
<td>Viewing Hardware Information</td>
<td>113</td>
</tr>
<tr>
<td>10</td>
<td>Plug-in</td>
<td>116</td>
</tr>
<tr>
<td>10.1</td>
<td>Test Tool</td>
<td>116</td>
</tr>
<tr>
<td>10.2</td>
<td>Calculator</td>
<td>117</td>
</tr>
<tr>
<td>10.3</td>
<td>External Program</td>
<td>118</td>
</tr>
<tr>
<td>11</td>
<td>Software Settings</td>
<td>120</td>
</tr>
<tr>
<td>11.1</td>
<td>Setting Main Window Starting Position</td>
<td>120</td>
</tr>
<tr>
<td>11.2</td>
<td>Changing UI Language</td>
<td>120</td>
</tr>
<tr>
<td>11.3</td>
<td>Viewing Help Documents and Updating Program Online</td>
<td>121</td>
</tr>
<tr>
<td>12</td>
<td>Troubleshooting</td>
<td>122</td>
</tr>
<tr>
<td>12.1</td>
<td>Failed to install NovaLCT of earlier versions</td>
<td>122</td>
</tr>
<tr>
<td>12.2</td>
<td>“No Screen” displayed in NovaLCT</td>
<td>122</td>
</tr>
<tr>
<td>12.3</td>
<td>Permission error</td>
<td>122</td>
</tr>
<tr>
<td>12.4</td>
<td>Failed to connect colorimeter</td>
<td>126</td>
</tr>
<tr>
<td>13</td>
<td>FAQs</td>
<td>127</td>
</tr>
<tr>
<td>13.1</td>
<td>How do I set the required parameters in no sending card mode?</td>
<td>127</td>
</tr>
<tr>
<td>13.2</td>
<td>How do I set the proxy when NovaLCT needs to access WAN network?</td>
<td>128</td>
</tr>
</tbody>
</table>
1 Software Introduction

The LED display control systems are categorized into synchronous control system and asynchronous control system. In synchronous control system, the images are played and controlled on the screen synchronously with the video source (such as on PC or camera). In asynchronous control system, they are played and controlled asynchronously. The program is pre-stored on the local playback device and then played according to the playback schedule.

No matter in which control system, the application scenario requires a piece of supporting software to configure the control system. Based on the needs of different users, NovaStar has designed and developed an LED screen configuration tool — NovaLCT.

As a basic screen configuration tool running on Windows, NovaLCT has the following features.

- **Easy to install**
 The latest installation package can be downloaded from NovaStar official website www.novastar.tech at any time and it is quick and easy to install.

- **Practical functions**
 A lot of commonly used functions are provided, such as screen configuration, screen monitoring, redundancy settings, brightness adjustment, multi-batch adjustment, dark or bright line adjustment, multifunction card management and other configuration functions. Thanks to these functions, the screen can present optimal display effect and is easy to manage and maintain.

- **Wide scope of applications**
 NovaLCT can be used to configure NovaStar synchronous control system products and multimedia players of asynchronous control system. It meets different needs of screen manufacturers, contractors, distributors, rental application clients, end users and technical support engineers.

- **Efficient configuration**
 After the PC and control system product are connected, users can perform any operations with the PC. NovaLCT displays the corresponding functions and parameters according to the different hardware models and programs. During configuration, various kinds of configuration files can be used to complete operations quickly. If the configuration information is saved to the hardware, it will not be lost even after the hardware is powered off.
2 Software Installation

Obtaining Software

Visit www.novastar.tech and choose **DOWNLOADS > Software**. In the NovaLCT area, download the needed version of software installation package.

![Figure 2-1 Obtaining software](image)

Installing Software

Before installing NovaLCT, prepare a Windows PC and disable the antivirus software.

Unzip the installation package, run the .exe file and follow the setup wizard to complete the installation. If a firewall prompt appears, choose to allow the installation.

If the PC does not have the serial port driver program or the program version is earlier, the NovaLCT installation program will automatically install or update the program.

Verifying Installation

If the installation is successful, the shortcut ![NovaLCT](image) appears on the desktop, and ![V-can](image) and ![ViPlex](image) icons appear on the taskbar.
3 Device Connection

3.1 Connecting PC to Sending Card

Connect the PC with NovaLCT installed to the sending card with control cable (USB cable or Ethernet cable), as shown in Figure 3-1. The MCTRL4K is used as an example of sending card.

All control commands, parameters and configuration files are transmitted with the control cable. The PC can also be connected to multiple sending cards with control cable. After selecting a target communication port in NovaLCT, you can operate the connected device.

Figure 3-1 Hardware connection example

If the receiving card supports no sending card mode, the PC with NovaLCT installed can be directly connected to the receiving card with Ethernet cable. For related settings, see 13.1 How do I set the required parameters in no sending card mode?

3.2 Connecting NovaLCT to Sending Card

If the hardware connection is normal and the sending card is operating normally, NovaLCT connects to the sending card automatically. After successful connection, the NovaLCT main window displays the sending card quantity and monitoring information about the control system, as shown in Figure 3-2.

Figure 3-2 Main window (Not logged in)

Click View Details of Device to view the communication port, device name, device quantity and SN. If the communication port information contains IP address, NovaLCT communicates with the device via Ethernet port. If it contains “USB” characters, they communicate via USB port. “SN” is the unique identifier of the sending card.

Connection related operations:

- **Reconnect sending card**
 Choose System > Reconnect.

- **Restart server**
 On the taskbar, right click and click Restart.
Set connection parameters

On the taskbar, right click , click Detect Config and set the marked parameters in the figure below.
4 User Login

Sending Card Connected

If the sending card is connected, users can directly use the available functions without login. To use the advanced functions, users must log in to NovaLCT.

Operations:
Choose User > Advanced Synchronous System User Login. Enter the password and click Login. The default password is “admin”.
After successful login, the main window is shown as Figure 4-1.

Figure 4-1 Main window (Logged in)

Other Operations:
- To log out, choose User > Logout.
- To change the login password, choose User > Change Password.

Sending Card Not Connected

If the sending card is not connected and users want to learn about the functions, use the demonstration mode.

Operations:
Choose User > Demonstration Login. Enter the password “admin” and click Login.
5 Screen Configuration

Generally, the screen is first built and then configured.
If users already have an appropriate configuration file, follow the operations in 5.1 Loading Configuration File to finish screen configuration quickly. If manual screen configuration is required, follow the operations in 5.2 Configuring Screen Manually in order.

5.1 Loading Configuration File

Applications

Load a system configuration file to finish screen configuration quickly.

Applicable Products

All receiving cards and sending cards

Prerequisites

The system configuration file (.scfg) is prepared.

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose User > Advanced Synchronous System User Login. Enter the password and click Login.

The default password is “admin”.

Step 2 Click or choose Settings > Screen Configuration from the menu bar to open the dialog box shown in Figure 5-1.

Figure 5-1 Screen configuration

Step 3 Choose a communication port.
If the PC is connected to multiple sending cards with control cable, there are multiple ports in the drop-down list.

Step 4 Select Load Configuration File.

Step 5 Click Browse, select a configuration file, and click Open.

Step 6 Click Next to start loading the configuration file.

After the file is loaded, the dialog box shown in Figure 5-2 is closed automatically.
5.2 Configuring Screen Manually

For a common screen, set the input source, light the screen and connect the screen in order to complete the screen configuration.

Note
The screen configuration page in NovaLCT varies depending on the functions supported by the sending card and receiving card.

5.2.1 Setting Input Source

Applications
Set the input source type, resolution, refresh rate and bit depth for the sending card to make the screen display the specified input source pixel to pixel.

Applicable Products
All sending cards except the all-in-one devices

Prerequisites
None

Related Information
If the resolutions of the sending card and screen are the same, the image can be displayed pixel to pixel.
If the refresh rate is too low, the screen flickers. A higher refresh rate helps stabilize the display image.

Operating Procedure

Step 1 On the menu bar, choose **User** > **Advanced Synchronous System User Login**. Enter the password and click **Login**.
The default password is “admin”.

Step 2 Click **Screen Configuration** or choose **Settings** > **Screen Configuration** from the menu bar to open the dialog box shown in Figure 5-3.
Step 3 Choose a communication port.

If the PC is connected to multiple sending cards with control cable, there are multiple ports in the drop-down list.

Step 4 Select Configure Screen and click Next.

Step 5 On the **Sending Card** tab page, view the current display mode, as shown in Figure 5-4.

Step 6 Select **Automatic Selection** to allow NovaLCT to automatically select the input source according to the input signal, or select an input source from the drop-down list.

Step 7 Click **Send** to send the configuration information to the hardware.

Step 8 In the **Source Configuration** area, set the input source type and the corresponding resolution. You can select a resolution from the drop-down list or customize a resolution.

Step 9 Set the refresh rate and bit depth of input source.

After you change the refresh rate, you are advised to resend the performance parameters on the **Receiving Card** tab page to avoid the problem that the receiving card cannot automatically fit the refresh rate.

The recommended input source bit depth is 8 bit.

Step 10 For the MCTRL660 PRO and MCTRL R5, you can perform the following operations to set input source backup if necessary. Otherwise, skip this step.

1. Click **Set** next to **Source Backup Setting**.
2. Select **Start source backup**.
3. Set the input source backup relation and click **OK**.
Step 11 Click **Set** to send the configuration information to the hardware.

Step 12 Click **Refresh** to confirm the result of input source setting.

Step 13 Click **Save** to save the configuration information to the hardware.

Note

You can click **Restore Factory Settings** on the **Sending Card** tab page to reset the sending card configuration information to factory settings.

5.2.2 Lighting a Screen

5.2.2.1 One-Click Screen Configuration

Applications

Load a receiving card configuration file from the cloud platform or local computer to quickly light a screen.

Applicable Products

All receiving cards

Prerequisites

- The input source settings are completed. For detailed operations, see 5.2.1 Setting Input Source.
- The receiving card firmware supports the module chip.
- If you want to load a receiving card configuration file from the local computer, the configuration file (`.scfg`, `.scfgx`) must be prepared.

Related Information

The configuration file cloud platform is specially used to store the receiving card configuration files. The files can be searched and download, which is convenient for users to use the configuration files.

Operating Procedure

Step 1 On the menu bar, choose **User** > **Advanced Synchronous System User Login**. Enter the password and click **Login**.

The default password is "admin"

Step 2 Click ![One-Click Screen Configuration](image) to open the dialog box shown in Figure 5-6.
Figure 5-6 Choosing communication port

Step 3 Choose a communication port and click **Next** to open the dialog box shown in Figure 5-7.

Figure 5-7 One-click screen configuration

If the PC is connected to multiple sending cards with control cable, there are multiple ports in the drop-down list. In the bottom-left corner of the page, the status of connection between NovaLCT and cloud platform is displayed.

Step 4 Perform any of the following operations as required to load a configuration file.

- **Load from cloud platform**

 Enter a keyword and click **Search**.

 - When only one configuration file is found, the file will be automatically downloaded and then loaded.

 - When multiple configuration files are found and if the target file you want to use is not downloaded, click **download** to download it. The file will be automatically loaded after it is downloaded. If the target file is already downloaded, double click **load** to load it.
Load from local computer

Click **Load** and select the target configuration file.

<table>
<thead>
<tr>
<th>Module Information</th>
<th>Cabinet Information</th>
<th>Version Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip</td>
<td>Width (Pixel)</td>
<td>Current Receiving Card</td>
</tr>
<tr>
<td>Size</td>
<td>Height (Pixel)</td>
<td>NPR316_V4.5.8.0</td>
</tr>
<tr>
<td>Scanning Type</td>
<td></td>
<td>send to phase</td>
</tr>
<tr>
<td>Decoding Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refresh Rate</td>
<td>Module Colu...</td>
<td></td>
</tr>
<tr>
<td>Gray Depth</td>
<td>Module Row...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the file is a module configuration file, you can edit the numbers of module rows and columns. If it is a cabinet configuration file, you cannot edit them.
Step 5 Click **Send to Receiving Card**. In the displayed dialog box, select **All Receiving Card** or specify the receiving card, and click **Send**.

- All Receiving Card: Send the receiving card configuration information to all the receiving cards loaded by the current sending card. If you select **Reset the Starting Coordinate of Receiving Card**, the starting coordinates of all the receiving cards will be reset to (0, 0). As a result, all the receiving cards display the top-left image of the input source.
- Specify Receiving Card: Send the receiving card configuration information to the specified receiving card by topology or by physical address.

Figure 5-8 Sending parameters to receiving card

![Send Parameters to Receiving Card dialog box](image)

Step 6 After successful sending, click **OK** to close the prompt box. All the cabinets loaded by the receiving cards connected to the sending card are now lighted.

Step 7 If necessary, click **Advanced** in the bottom-right corner to enter the **Screen Configuration** page and perform more settings for the screen.

On the **Screen Configuration** page, you can click **Back to One-Click Configuration** to return to the **One-Click Screen Configuration** page.

Figure 5-9 Advanced settings

![Advanced settings](image)
5.2.2.2 Manual Screen Configuration

5.2.2.2.1 Lighting Module

Applications

Set the receiving card parameters to light a new module.

Applicable Products

All receiving cards

Prerequisites

- The input source settings are completed. For detailed operations, see 5.2.1 Setting Input Source.
- The display settings on the PC are completed. For example, display settings on Windows 10 are shown in Figure 5-10 and Figure 5-11. The resolution of PC graphics card must be set to be greater than or equal to the screen resolution based on the actual condition.
- The receiving card firmware supports the module chip.

![Figure 5-10 PC display settings 1](image)

- Change the size of text, apps, and other items:
 - 100% (Recommended)

- Advanced scaling settings:
 - Resolution:
 - 1920 x 1080 (Recommended)

 - Orientation:
 - Landscape

- Multiple displays:
 - Duplicate these displays
Related Information

The module specifications are provided when the module is shipped. Users can also obtain the specifications from the driver chip, decoding chip and pin definition on the module.

For example, the following information can be obtained from the module shown in Figure 5-12.

- Driver chip: 24 SUM2016GAS2 chips
- Data type: 2 groups of parallel RGB data
- Module type: Regular module
- Pixel quantity: 64 columns × 32 rows
- Decoding chip: 2 SUM74HC138 chips

Both regular and irregular modules are rectangular. If the module column quantity can be divided by 16 without remainder, the module is a regular one.

An irregular module has any of the following features:
- Some output pins of the driver chip are not used.
- The numbers of pixel rows or columns driven by each data group are different.
- The data groups do not drive the pixel rows or columns in order.

Operating Procedure

Step 1 On the **Screen Configuration** page, click the **Receiving Card** tab.

Figure 5-13 Screen configuration

Step 2 Click **Smart Settings**.

Step 3 Select option 1 and click **Next**.

- **Option 1**: Enter smart settings.
- **Option 2**: Load a module configuration file to quickly configure the module.
- **Option 3**: Load the module configuration file in the cabinet database to quickly configure the module.

After the configuration file is loaded, click **Send to Receiving Card**.
Figure 5-14 Smart settings options

Step 4 On the **Smart Settings Guide 1** page, set the parameters and click **Next**.

Figure 5-15 Smart Settings Guide 1

- **Module Chip**: Select the type of module driver chip. You can click **Select chip type** to open the chip table and select the desired chip. If the table does not have the type of chip you want, select **Common Chip**.
- **Data Type**: Select the data type of the module. Parallel data indicates that the data of the RGB three colors is transmitted parallelly, but serial data indicates that the data of the RGB three colors is transmitted serially.
- **Module Type**: Select the module type. Module type includes regular and irregular modules.
- **Number of Driver Chips for One Scan and One Color**: This parameter is available when irregular module is selected. It is calculated by the following formula.
 \[
 \text{Number of driver chips for one scan and one color} = \frac{\text{Number of driver chips}}{\text{Number of data groups}} / \text{Number of colors}
 \]
- **Quantity of Pixels**: Set the quantity of pixel columns and rows on the module.
- Row Decoding Type: Select the row decoding type of the module. You can select it based on the decoding chip type.
- Hub Mode: Use the default value.
- Ghost Control Signal Polarity: Use the default value.

Step 5 On the **Smart Settings Guide 2** page, select one option based on the current display on the module and click **Next**.

When you are viewing the display on the module, view the first module loaded by the first receiving card connected to the first Ethernet port.

Figure 5-16 Smart Settings Guide 2

![Smart Settings Guide 2](image)

Step 6 On the **Smart Settings Guide 3** page, select the module display color switching mode and check whether the current module display color is the same as the selected color.

Figure 5-17 Smart Settings Guide 3

![Smart Settings Guide 3](image)

- If they are the same, click **Next** to go to **Step 7**.
- If they are different, select a color corresponding to the module display color from the drop-down list to make them the same.

Step 7 On the **Smart Settings Guide 4** page, set the parameters based on the number of lighted rows (or columns) on the module and click **Next**.

Figure 5-18 Smart Settings Guide 4

![Smart Settings Guide 4](image)

Step 8 On the **Smart Settings Guide 5** page, set the parameters based on the number of lighted rows (or columns) on the module and click **Next**.
Step 9 On the **Smart Settings Guide 9** page, view the flashing pixel in the first row on the module and click the corresponding cell in the grid to draw the pixel position.

Generally, you only need to draw pixel position for the first row of pixels. If the flashing pixels are on the other row or column, click the corresponding cells in the grid.

- **Automatic Generation**: Complete pixel position drawing for the first row of pixels quickly.
- **Cancel**: Clear the last pixel position drawing.
- **Clear**: Clear all the pixel position drawing.
- **Zoom out the grid.**
- **Zoom in the grid.**

Figure 5-19 Smart Settings Guide 5

Step 10 View the flashing pixel in the first column on the module and click the corresponding cell in the grid to draw the pixel position (You can also use the keyboard arrow key to quickly draw the position), and click **OK** after the drawing is done.

Generally, you only need to draw pixel position for the first column of pixels. If the flashing pixels are on the other row or column, click the corresponding cells in the grid.

Step 11 Click **Next** and click **OK**.

Step 12 (Optional) Enter a module name and save the module configuration as a file or save the module configuration to the cabinet database.

In the future, you can load the module configuration file to quickly light the modules with the same specifications.

- **Browse**: Select the path to save the module configuration file.
- **Change Cabinet Database**: Open or create a cabinet database.
- **View**: View the module configuration file saved in the cabinet database.
● View Module: View the detailed information about the current module.

Figure 5-21 Saving module information

Step 13 Click Complete.

Note
On the Receiving Card tab page, you can also perform the following operations.

- In the Module Information area, click to view the detailed module information. On the Details of Module page, click Save Module to save the module configuration as a file.
- Click Restore Factory settings to reset the configuration information of all or specified receiving cards to factory settings.
- Type “admin” to show the Save to factory area button. This button is used to save some parameters to the factory area before delivering the cabinets to users. This function is supported only by some receiving cards.

5.2.2.2.2 Setting Cabinet

Applications
Set the size of the cabinet loaded by the current receiving card and the cascading direction of the modules in the cabinet.

Applicable Products
All receiving cards

Prerequisites
- A module is lighted. For detailed operations, see 5.2.2.1 Lighting Module.
- If the cabinet is irregular, the cabinet database file (.mcl) or module configuration file (.module) is prepared.

Related Information
If a cabinet is rectangle and the specifications of all the modules are the same, the cabinet is a regular cabinet, otherwise it is an irregular cabinet. For an irregular cabinet, the configuration file must be used to construct the cabinet.

Operating Procedure

Step 1 On the Screen Configuration page, click the Receiving Card tab.

Step 2 In the Cabinet Information area, perform the corresponding operations below based on the cabinet type.
Figure 5-22 Cabinet information

+ **Configure regular cabinet**
 Select Regular, set the cabinet width and height, and set the cascading direction of modules.

+ **Configure irregular cabinet**
 a. If you need to configure row extraction position, select Big Control Mode. If Big Control Mode is not displayed or you do not need to configure row extraction position, skip this step.
 b. Select Irregular, click Construct Cabinet to open the dialog box shown in Figure 5-23.
 c. If you have a cabinet configuration file (.mcl/.cabinet), click Load to configure the cabinet quickly. If you do not have the file, perform the subsequent operations to manually configure the cabinet.
 d. Set Data Groups of Cabinet according to the number of data groups actually used by the cabinet and click Set.
 e. Click From Cabinet Database or From File to load modules.
 The loaded modules support the Ctrl+C, Ctrl+V, Ctrl+A and Delete keyboard shortcuts.
 f. Adjust the positions of modules to let them form a cabinet whose size is consistent with the actual cabinet size.
 g. Select the data group one by one and double click the corresponding modules to connect them.
 After you double click the module, the module number is displayed. For example, (2, 2) indicates the module is the second module of the second data group.
 Right clicking the module can cancel the connection.
 h. Select Simple Mode or Advanced and configure one or more row extraction positions. If Big Control Mode is not selected on the Receiving Card tab page, skip this step.
 Simple Mode: Set the row extraction position of cabinet and click Add. For example, if you set the parameter to 2, the second row in the cabinet will be extracted during row extraction and the second column will be extracted during column extraction.
 Advanced: Set the row extraction position of module and click Add. For example, if you set the three parameters to 2, the second row in the second cascaded module connected to the second data group will be extracted during row extraction and the second column in the second cascaded module connected to the second data group will be extracted during column extraction.
 i. After the configurations are done, click OK. If necessary, click Save to save the cabinet configuration information to the cabinet database or save the information as a file.
 j. (Optional) Click View Cabinet to view the cabinet information.
Step 3 If cabinet rotation is required, click **Set Rotation** and select the rotation angle. If it is not required, skip this step.

After cabinet rotation is set, all the input sources will be rotated to display according to the set angle.

Step 4 After the settings are done, click **Send to Receiving Card**. In the displayed dialog box, select **All Receiving Card** or specify the receiving card, and click **Send**.

- All Receiving Card: Send the receiving card configuration information to all the receiving cards loaded by the current sending card. If you select **Reset the Starting Coordinate of Receiving Card**, the starting coordinates of all the receiving cards will be reset to (0, 0). As a result, all the receiving cards display the top-left image of the input source.
- Specify Receiving Card: Send the receiving card configuration information to the specified receiving card by topology or by physical address.

Step 5 After successful sending, click **OK** to close the prompt box. All the cabinets loaded by the receiving cards connected to the sending card are now lighted.

Step 6 (Optional) Click **Save to File** to save the configuration information as a receiving card configuration file (.rcfgx), or click **Receiving Card is configured with U disk file** to save the information as a USB drive file (.bin).

5.2.3 Connecting Screen

Applications

Connect the receiving cards logically. Generally, one receiving card loads one cabinet. Therefore, this function is also called connecting cabinets.

Applicable Products

- Configuration of standard screen: Applicable to all sending cards

www.novastar.tech
• Configuration of complex screen: The DVI connector of the MCTRL1600 cannot be used to configure a complex screen. You must use its DP 1.2 connector. The E8000 and H9 devices cannot be used to configure a complex screen.

Prerequisites

The cabinet settings are completed. For detailed operations, see 5.2.2.2.2 Setting Cabinet.

Related Information

In NovaLCT, you can configure up to 20 screens.

To configure a complex screen efficiently, you are advised to configure a standard screen first and then configure the complex screen based on the standard screen.

Operating Procedure

Step 1 On the **Screen Configuration** page, click the **Screen Connection** tab.

Step 2 Set the screen quantity and click **Configure**.

If the multiple output ports of the sending card load the different areas of the same screen, set the screen quantity to 1. If the multiple output ports of the sending card load different screens, set the screen quantity to the number of screens loaded.

Step 3 On the **Standard Screen** page, set the column and row quantity of receiving cards. For example, set them to 10 columns and 5 rows respectively, as shown in **Figure 5-25**.

Figure 5-25 Column and row quantity of receiving cards

Step 4 Choose an output port.

Step 5 Set the receiving card size (loading capacity) and connection. For example, **Figure 5-26** illustrates setting of the receiving cards loaded by output port 1.

- Custom connection: In the table, click or drag the mouse.
- Quick connection: Click a connection pattern and drag the mouse to select an area in the table.
During connection, the loading capacity of all the receiving cards is the value you set by default. If necessary, you can change the width and height of the loading capacity on the left.
Right clicking a receiving card cancels the configuration of the card.

Figure 5-26 Receiving card connection and size

- Apply to Entire Column: Apply the loading capacity width of the selected receiving card to all the receiving cards in the same column.
- Apply to Entire Row: Apply the loading capacity height of the selected receiving card to all the receiving cards in the same row.
- Apply to the Current Port: Apply the current loading capacity width and height to all the receiving cards connected to the current output port.
- Reset All: Reset all the receiving card connections and blanks.
- Hided Mapping Line: Hide the receiving card mapping line (namely the connections).
- : Mark the receiving card.
- \(\Rightarrow\): Return to the previous step of connection.
- \(\Rightarrow\): Clear all the connections of receiving cards connected to the current output port.
- Zoom: Zoom in or out the receiving card interface in the middle. When the interface is large enough, cabinet related information is displayed.

Step 6 Set the specified receiving cards blank and set the blank size, as shown in the example in Figure 5-27. If you do not need to set blank, skip this step.

Click a receiving card and select Set Blank to leave the position of that receiving card blank. Continue clicking or dragging the mouse on the empty cabinets to set blank on the other positions.

The receiving cards that are left blank do not load the screen to display the image, which helps to realize configuration of complex screen.

The blank size must be set based on the loading capacities of the neighbor receiving cards. For example, the display effect of both connection lines in Figure 5-28 is N shape. The two areas in orange are loaded by the neighbor receiving cards. Therefore, their blank size is set to 0.
Step 7 Repeat Step 4 to Step 6 to set the receiving cards loaded by the other output ports.

For example in Figure 5-28, the receiving cards connected by the green line are loaded by output port 1 and the receiving cards connected by the yellow line are loaded by output port 2.

Note

To configure a complex screen efficiently, you are advised to configure a standard screen first and then configure the complex screen based on the standard screen by following the operations below.

After the standard screen is configured, select Complex Screen. The Complex Screen page shows the connection diagram of the standard screen. The connection diagram in Figure 5-28 is shown as the diagram in Figure 5-29.

Double click the parameter values in the table on the right and adjust them. Click the function buttons below the...
table to add, edit and delete the receiving cards to let the configuration meet the actual screen configuration requirements.

Figure 5-29 Configuration of complex screen

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Click Send to HW to send the configuration information to the hardware. If necessary, click Save to File to save the configuration information as a file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty cabinets cannot exist before saving configuration. You can set the empty cabinets blank.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>After the settings are done, click Save to save the configuration information to the hardware.</td>
</tr>
</tbody>
</table>

Related Operations

- Detect Communication Status: Detect the status of connection between the receiving card and Ethernet port.
- Read the Number of Receiving Cards: Read the number of receiving cards connected to the current Ethernet port.
- Enable Mapping: Enable the Mapping function. The Mapping function is used to display the cabinet No. and the Ethernet port the cabinet is connected to on the cabinet. In this way, you can obtain the connection information.
- Read from HW: Read the current configuration information in the hardware.
- Coordinate: Set the start position of the display image on screen.
- Virtual Mode: Set the layout of LEDs.
- Enable Sync: Used for the mosaic function of the all-in-one device

5.3 Setting Redundancy

Applications

Set device redundancy and Ethernet port redundancy to ensure high reliability of the control system in applications like stage and conference center.

Applicable Products

- Redundancy: Applicable to all sending cards
- Hot backup verification: Applicable to the MCTRL4K, MCTRL R5 and KT8 sending cards

www.novastar.tech
Prerequisites

Redundancy related hardware connection is done. The devices are cascaded before you set device redundancy and Ethernet port redundancy between devices.

Related Information

Use the hot backup verification function to directly verify effectiveness of backup Ethernet ports without disconnecting and reconnecting Ethernet cables.

Operating Procedure

Step 1 On the menu bar, choose User > Advanced Synchronous System User Login. Enter the password and click OK. The default password is “admin”.

Step 2 Click or choose Settings > Screen Configuration from the menu bar to open the dialog box shown in Figure 5-30.

Figure 5-30 Screen configuration method

Step 3 Choose a communication port.

Step 4 Select Configure Screen and click Next.

Step 5 On the Sending Card tab page, perform any of the following operations as required.

+ **Configure device redundancy**
 - Select Set as Primary or Set as Backup to set the current device as the primary or backup device.

 Note
 - To set the backup device as the primary device, deselect Set as Backup first, send the settings to the hardware and then select Set as Primary.
 - The sending card that is used in the completed screen configuration cannot be set as backup device. To set it as backup device, you must delete the screen configuration information first.

+ **Configure Ethernet port redundancy**
 - a. Click Add to open the Redundancy Settings dialog box, as shown in Figure 5-31.
 - b. Enter the serial numbers of the sending cards and output ports, and click Add.
 - For Ethernet port redundancy within a sending card, enter the same value for serial numbers of the primary and backup sending card. For Ethernet port redundancy between sending cards, enter the actual serial numbers of the primary and backup sending cards after they are cascaded.
 - c. After the configurations are done, click Close.
Step 6 (Optional) After Ethernet port redundancy is configured, perform the following operations to verify hot backup.

1. Click **Verify** to open the dialog box shown in Figure 5-32.
2. Select the sending card and click **Enable Hot Backup Verification**. If the display is normal, the backup Ethernet port is effective, otherwise it is not.
3. After verification, click **OK**.
4. Click **Disable Hot Backup Verification** and click **OK**.
5. Close the **Hot Backup Verification** dialog box.

Figure 5-31 Redundancy settings

- Serial Number of Primary: 1
- Serial Number of Backup: 2

Step 7 Click **Send** to send the configuration information to the hardware, or click **Save** to save the information to the hardware.

5.4 Enabling 3D

Applications

Enable the 3D function and set the related parameters to let users wearing 3D glasses enjoy stereoscopic images.

Applicable Products

The MCTRL4K, MCTRL1600 and KT8 sending cards

Prerequisites

The 3D and low latency functions cannot be enabled at the same time. The low latency function must be disabled before enabling 3D function.

The hardware connection is done and the 3D glasses are prepared.
Related Information

After the 3D function is enabled, the loading capacity of the sending card is reduced by half.

Operating Procedure

Step 1 On the menu bar, choose User > Advanced Synchronous System User Login. Enter the password and click OK. The default password is “admin”.

Step 2 Click or choose Settings > Screen Configuration from the menu bar to open the dialog box shown in Figure 5-33.

Step 3 Choose a communication port.

Step 4 Select Configure Screen and click Next.

Step 5 On the Sending Card tab page, select Enable in the 3D Function area.

Step 6 Click Settings next to Enable to open the dialog box shown in Figure 5-35.
Figure 5-35 Setting 3D parameters

<table>
<thead>
<tr>
<th>Setting 3D Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Source Format</td>
<td></td>
</tr>
<tr>
<td>○ Side-by-side</td>
<td>○ Top-and-bottom</td>
</tr>
<tr>
<td>Eye Priority</td>
<td></td>
</tr>
<tr>
<td>○ Right eye</td>
<td>○ Left eye</td>
</tr>
<tr>
<td>Mode Selection</td>
<td></td>
</tr>
<tr>
<td>○ BVI</td>
<td>○ BVI1</td>
</tr>
<tr>
<td>3D signal emitter</td>
<td></td>
</tr>
<tr>
<td>□ Enable third-party emitter</td>
<td></td>
</tr>
<tr>
<td>Signal Delay Time</td>
<td></td>
</tr>
<tr>
<td>Please set an appropriate delay time to make left and right eye sync</td>
<td></td>
</tr>
</tbody>
</table>

Step 7
Click **Load from File** to quickly configure the related parameters, or configure them manually.

- **Video Source Format**: Set the format of the video source to side-by-side, top-and-bottom or frame sequential according to the format of the used video source.
- **Eye Priority**: Set which image is sent first, the left eye image or the right eye image. Wear the 3D glasses and watch the display. If the display is abnormal, set the parameter value to the other one. If the display is normal, the setting is done.
- **Mode Selection**: Select the same or different signal sources for the left and right eye images. If there is only one input source, this parameter is not displayed.
- **Right Eye Start**: Set the start position of the right eye image. When the video source format is side-by-side or top-and-bottom and the left and right eye images are provided, this parameter can be set.
- **3D signal emitter**: If you use a third-party 3D emitter, select Enable third-party emitter. If you use the EMT200 emitter of NovaStar, do not select it.
- **Signal Delay Time**: Set the delay time of sending the left and right eye images from 3D signal emitter to the 3D glasses. This setting ensures that the switching between left and right eye images of the 3D glasses is in sync with the switching between the left and right images on the display. This parameter is applicable to both the NovaStar and third-party emitters.

Step 8
After the configurations are done, click **Save** to save the configuration information to the hardware.

The 3D parameters take effect on the hardware immediately after they are configured. If they are saved to the hardware, they will not be lost even after the 3D emitter is powered off.

Step 9
(Optional) Click **Save to File** to save the configuration information as a file on the local computer.
5.5 Setting Working Mode

Applications

Set the working mode to let the device switch to the sending card mode (also known as video controller mode) or the fiber converter mode.

Applicable Products

The MCTRL660 PRO, MCTRL1600, H9, NovaPro UHD Jr, K16, and MCTRL R5 sending cards

Prerequisites

None

Related Information

For the MCTRL1600, H9, NovaPro UHD Jr and K16, after their working mode is set to sending card mode, you can further set the working mode of their optical ports. The working modes of optical port include hot backup mode and copy mode. **Figure 5-36 and Figure 5-37** are illustrations of the two optical port working modes, using the NovaPro UHD Jr as an example.

- Hot backup mode: The sending card sends the two duplicate optical signals to the same display through the primary and backup fiber converters to form a loop backup.
- Copy mode: The sending card sends the two duplicate optical signals to two displays through two fiber converters.

Figure 5-36 Hardware connection for optical port hot backup mode

- Data flow of primary device
- Data flow of backup device

Note:

1. If one of the fiber converters fails, the LED screen can still work normally.
2. If the Ethernet cable of one fiber converter fails, the LED screen can still work normally.
Operating Procedure

Step 1 On the menu bar, choose User > Advanced Synchronous System User Login. Enter the password and click OK. The default password is “admin”.

Step 2 Click Screen Configuration or choose Settings > Screen Configuration from the menu bar to open the dialog box shown in Figure 5-38.

Figure 5-38 Screen configuration method

Step 3 Choose a communication port.

Step 4 Select Configure Screen and click Next.

Step 5 On the Sending Card tab page, click Set Working Mode.

Figure 5-39 Working mode

Step 6 Select the sending card and set the working mode to sending card mode or fiber converter mode.
Step 7 For the MCTRL1600, H9, NovaPro UHD Jr and K16, after their working mode is set to sending card mode, if necessary, set the working mode of their optical ports.

Step 8 Click OK.

5.6 Setting Performance Parameters

Applications

Set the performance parameters of the cabinet to let the screen present better display effect.

Applicable Products

All receiving cards

Prerequisites

None

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose User > Advanced Synchronous System User Login. Enter the password and click OK. The default password is “admin”.

Step 2 Click or choose Settings > Screen Configuration from the menu bar to open the dialog box shown in Figure 5-41.

Figure 5-41 Screen configuration method

Step 3 Choose a communication port.
Step 4 Select **Configure Screen** and click **Next**.

Step 5 Click the **Receiving Card** tab and click **Read from Receiving Card** to obtain the latest configuration information.

Step 6 If you have a receiving card configuration file (.rcfgx/.rcfg), click **Load from File** to complete the configuration quickly. If you do not have the file, perform the subsequent operations to manually configure the performance.

Step 7 In the **Performance Settings** area, set the performance parameters.

- **Refresh Rate**: Indicates the rate of updating the image on the display. Increasing refresh rate reduces image flickering, allowing for a more stable image.
- **Grayscale Level**: Indicates the shading of display. The higher the grayscale level, the more brightness levels the display will have. For example, if the grayscale level is 16bit, the display can express 65,536 levels of brightness.
- **Grayscale Mode**: Indicates the grayscale display mode. It includes brightness first, refreshing rate first, grayscale first and performance balancing.
- **DCLK Frequency**: Indicates the frequency of shift clock.
- **DCLK Duty Cycle**: Indicates the duty cycle of shift clock. Set it to 50% in general.
- **DCLK Phase**: Indicates the phase of shift clock. When there are mismatching or flashing pixels, adjust this parameter to fix the problem.
- **Refresh Rate Times**: Indicates the times of refresh rate.
- **Low Grayscale Compensation**: Indicates the compensation for the grayscale in low grayscale conditions, allowing for more precise grayscale.
- **Row Blanking Time**: Used to adjust the ghost problem of the scanning type display. If the ghost problem is serious, increase the parameter value.
- **Line Changing Time**: Works with row blanking time to adjust the ghost of the scanning type display.
- **Ghost Control Ending Time**: Works with row blanking time and line changing time to adjust the ghost of the scanning type display.
- **Line Break trimming**: Works with row blanking time to adjust the ghost of the scanning type display.
- **GCLK Frequency**: Indicates the frequency of grayscale clock.
- **GCLK Duty Cycle**: Indicates the duty cycle of grayscale clock.
- **GCLK Phase**: Indicates the phase of grayscale clock.
- **Blanking Time Height**: Used to eliminate the lower ghost
- **Minimum OE Width**: It is calculated from other performance parameters and can be viewed only.
- **Brightness Efficiency**: It is calculated from other performance parameters and can be viewed only.

Step 8 After the settings are done, click **Send to Receiving Card** to send the performance parameters to the hardware.

Step 9 After the display effect meets the expectation, click **Save** to save the performance parameters to the hardware.

Data Group Exchange

This function is used to exchange every two data groups to adjust the display image. It can be performed only after the smart settings are done and supports regular cabinets only. For example, after you exchange the data groups A and B, data group A outputs the image of data group B, and data group B outputs the image of data group A.
Click **Data Group Exchange**, select all the receiving cards or specify one receiving card and click **OK** to open the **Data set exchange** dialog box. If the module height is less than 8 or the width is less than 20, the data group exchange is in group mode, otherwise it is in intuition mode.

The red table on the desktop indicates the original data groups. Each row is a data group. The first row is the first data group.

Intuition Mode

Select **Enable data exchange** and view the data group No. displayed on the screen. In the dialog box, double click the rows with the same No. in the second column and change the numbers.

Example:

The receiving card has two data groups in parallel output. The screen displays 5 and 6, indicating that it outputs the images of data group 5 and data group 6.

In the **Data set exchange** dialog box, change 5 to 1, 6 to 2, 1 to 5, and 2 to 6, as shown in the figure below.

![Data set exchange (intuition mode)](image)

Click **Send**. The screen displays 1 and 2, indicating that it outputs the images of data group 1 and data group 2 after data group exchange.

Group Mode

Select **Enable data exchange** and check whether the screen has a white area. If it has no white area, click **No flashing area**. The white row in the red table moves to the next data group. If it has a white area, click the the data group you want to exchange in the **Data set exchange** dialog box.

Example:

The receiving card has two data groups in parallel output. Click **No flashing area** multiple times and watch the screen. When the white row in the red table moves to the fifth data group, the screen has a white area, indicating that the screen outputs the image of data group 5.

In the **Data set exchange** dialog box, click the first data group. This exchanges data group 5 and data group 1. The white row automatically moves to the sixth data group. Then, click the second data group in the **Data set exchange** dialog box. This exchanges data group 6 and data group 2, as shown in the figure below.
After the settings are done, click **Send** to send the configuration information to receiving cards.

More Settings

Click **More Settings** to perform the following functions and set the extended attributes for the used chip.

- **Symmetrical/Data Group Extension**

 Set the output mode of data group, data group extension, hub mode and graphics output direction.

 - **Output Mode**: If the screen is very wide and the receiving card cannot load the entire width, set the output mode to symmetrical outputs, triple strip outputs or quadruple strip outputs.

 - **Data Group Extension**: If the receiving card supports data group extension, select the corresponding option according to the actual condition.

 - **Ghost Control Signal**: Use the default value.

 - **Hub Mode**: Select a mode based on the receiving card specifications.

 - **Graphics Output**: Use the default value.
Monitoring Card Data Line Adjustment

Adjust the data lines used by red, green, blue and virtual red LEDs during LED error detection.

Select **Enable Adjustment of Monitoring Data Line** and select **Red**, **Green**, **Blue** or **Virtual Red** from the drop-down list. After the settings are done, click **OK**.

Additional Function

Enable or disable some additional functions of receiving card.

EMC function setting is optional. The other functions are described as follows.

- **Isolated Pixel Afterglow**: Eliminate the afterglow problem of isolated pixels.
- **Indicator Light of Receiving Card**: Turn off the operating status indicator of receiving card.
- **Shorten the synchronization time**: Shorten the frame interval time during data output of receiving card.
- **Brightness becomes strong slowly**: Make the display become brighter slowly after the power is supplied.
- **Linear**: Increase the loading capacity of receiving card. The linear mode requires that the module connection line is straight, the cabinet does not have data row extraction and the cabinet is not rotated.
- **Calibration Threshold**: When the grayscale level is less than or equal to the specified level, use the average calibration coefficients, other than the pixel level calibration coefficients. This fixes the display problems in low grayscale after the screen is calibrated, such as mottling, color blocks and grayscale spikes.

The R, G, and B values are hexadecimal and the largest value is FFFF. Before setting them, check the Y-axis value corresponding to the X-axis value (the specified grayscale level) in the Gamma table in the brightness adjustment function, and then convert the Y-axis value to hexadecimal value. If the device does not support individual Gamma adjustment for RGB, set the R, G and B to the same value. The VR value setting is optional.

- **Delay Time of ABCDE Signals**: Fix the problem that the afterglow cannot be eliminated because the decoding signals are not synchronized. After the settings are done, click **Apply**.

Flash Arrangement
When the module has a flash memory, use this function to set the flash memory arrangement of cabinet. The receiving card reads the calibration coefficients and module IDs from the flash memory via bus.

Before connecting the modules that have flash memory, obtain the bus No. A bus can cascade multiple modules. Then, set the flash arrangement according to the actual connection order.

a. Set the number of flash memory rows and columns. Generally, a module has one flash memory.

b. Click the bus No.

c. Set the width and height of the module controlled by the flash memory.

d. In the arrangement table, click the cells in order according to the actual module connection.

Right clicking a flash memory cell cancels the configuration of that flash memory. Clicking **Back** returns to the previous operation. Clicking **Apply to Current BUS** sets all the flash memories connected to the current bus to the same value.

e. Set the number of data groups of the module.

f. If necessary, adjust the start coordinates of the flash memory, otherwise skip this step.

g. If necessary, click the other bus to continue setting. After the configurations are done, click **OK**

Monitoring Card Data Set Exchange

When the hardware connections of the monitoring card have errors, use this function to exchange the data groups of the card without the need to reconnect the hardware.
a. Click **Monitoring Card Data Set Exchange**. In the displayed dialog box, select **All Receiving Cards** or specify one receiving card and click **OK**.

b. In the **Monitoring card data set exchange** dialog box, select **Enable monitoring card data set exchange**.

c. Double click the row in the second column and change the value. For example, change 1 to 5, 2 to 6, 5 to 1, and 6 to 2, indicating that data group 1 is exchanged with data group 5 and data group 2 is exchanged with data group 6.

d. After the settings are done, click **Send** to send the configuration information to the monitoring card.

Cabinet Information Settings

Set the weight, power, width, height, pixel width, pixel height and voltage of the cabinet base on the actual situation.
6 Brightness and Chroma Adjustment

6.1 Calibration

6.1.1 Setting Online Calibration Parameters

Applications

Set parameters of displaying image and disable calibration or set calibration type during online calibration when NovaLCT works with NovaCLB calibration software.

Applicable Products

All receiving cards and sending cards

Prerequisites

- Hardware setup is done.
- NovaCLB calibration software is installed.

Related Information

Screen calibration enables the brightness and chroma of LEDs to reach target values, allowing for balanced images and better display effect.

Operating Procedure

Step 1 On the menu bar, choose **User > Advanced Synchronous System User Login**. Enter the password and click **OK**. The default password is “admin”.

Step 2 Click **Calibration** or choose **Tools > Calibration** on the menu bar.

Figure 6-1 Screen calibration
Step 3 Select the **Single-Screen Mode** tab or **Combined-Screen Mode** tab.

Step 4 In single-screen mode, select a communication port and screen. In combined-screen mode, skip this step.

Step 5 Set the displayed parameters.

- **Position to Display Image**: Choose to display the image of the primary or extended monitor on the screen.
- **Device Response Time**: In combined-screen mode, setting this parameter allows the display window to fit well with the time for camera to take pictures.
- **Use input source for display**: Select this option if you want to use a signal source for display. Deselect this option if you want to use hardware for display.
- **Enable/Disable Calibration**: Disable calibration, or select brightness calibration or chroma calibration. Click **Save** to apply your settings.

Step 6 If network monitoring succeeds, open NovaCLB and enter the local IP address and port number displayed on the **Online Calibration** tab page of NovaLCT to connect NovaCLB to NovaLCT.

If network monitoring fails, click **Reconnect**, or change the port and then click **Reconnect**.

Step 7 (Optional) Click **Export Log** to export the communication log, or click **Clear** to clear the communication log.

6.1.2 Getting Average Coefficients

Applications

Get the average coefficients of a specified area on a screen.

Applicable Products

All receiving cards

Prerequisites

None

Related Information

Offline calibration is not available for combined screens.

Operating Procedure

Step 1 On the menu bar, choose **User > Advanced Synchronous System User Login**. Enter the password and click **OK**. The default password is “admin”.

Step 2 Click ![Calibration](image) or choose **Tools > Calibration** on the menu bar.

Step 3 Select the **Single-Screen Mode** tab.

Step 4 Select a communication port and screen.

Step 5 Select the **Offline Calibration** tab.
Step 6 Specify an area where you want to get the average calibration coefficients.

Step 7 Click **Get Average Coefficients**.

Step 8 After the average calibration coefficients are obtained successfully, click **OK**.

Step 9 (Optional) Click **Display** or **Hide** to show or hide the display window.

6.1.3 Managing Calibration Coefficients

Applications
Upload, save, adjust, erase and reload calibration coefficients.

Applicable Products
All receiving cards

Prerequisites
- If you want to use a database file, you need to prepare it.
- Module flash management requires modules with flash memory.

Related Information
Calibration coefficient management is not available for combined screens.

Calibration database files fall into two types:

- **Screen calibration database file**
 Saves the coordinates and calibration coefficients of each pixel on a screen. After the location of a cabinet is changed, the calibration coefficients cannot be uploaded to the cabinet.

- **Cabinet calibration database file**
 Saves the coordinates and calibration coefficients of each pixel on a cabinet according to the cabinet number. After the location of a cabinet is changed, the calibration coefficients can be uploaded to the cabinet according to the cabinet number.
Module flash memory can store calibration coefficients and module IDs. In the event of network outage, you can hold down the self-test button for 2 seconds to read the calibration coefficients in module flash memory back to the receiving card.

Operating Procedure

Step 1 On the menu bar, choose **User > Advanced Synchronous System User Login**. Enter the password and click **OK**.

 The default password is “admin”.

Step 2 Click or choose **Tools > Calibration** on the menu bar.

Step 3 Select the **Single-Screen Mode** tab.

Step 4 Select a communication port and screen.

Step 5 Select the **Manage Coefficients** tab.

Figure 6-3 Calibration coefficient management

Step 6 Perform the following operations as required. During the operation, you can select **Disable Calibration**, **Brightness Calibration** or **Chroma Calibration** on the left and view the result on the screen after the coefficients are applied.

- **Upload coefficients**

 Select the cabinet or screen calibration database file from the PC and fast or stably upload the calibration coefficients to receiving cards. You can also select and upload dark or bright line adjustment file (configuration file of dark or bright line adjustment function for common version) at the same time. Stable uploading takes more time than fast uploading, but it is more stable and reliable.

- **Save calibration coefficients to database**

 Save the calibration coefficients in receiving cards to the cabinet or screen calibration database file.

- **Set coefficients for a new receiving card**

 Get calibration coefficients by uploading calibration database file or referring to one or more surrounding cabinets. Adjust and save the coefficients to receiving cards as required.

- **Set coefficients for a new module**

 Get calibration coefficients by uploading calibration database file or referring to one or more surrounding modules. Adjust and save the coefficients to receiving cards as required.
+ **Adjust coefficients (Color is uniform on screen)**
 Adjust the current calibration coefficients of receiving cards or adjust the coefficients by referring to the surrounding area. After the adjustment, you can also apply the coefficients to other specified areas.

+ **Erase or reload calibration coefficients**
 Erase the calibration coefficients in the application areas of receiving cards or reload calibration coefficients from application areas. You are advised to back up the database file before erasing it.

+ **Reset calibration coefficients**
 Set calibration coefficients to specified values.

+ **Upload coefficients (for factory use)**
 Upload the calibration coefficients in the cabinet calibration database file to the corresponding cabinets in turn according to the imported cabinet ID and export a screen calibration database file. Stable uploading takes more time than fast uploading, but it is more stable and reliable.

+ **Module Flash**
 Check module flash memory status, view the calibration coefficients of modules and receiving cards, and save calibration coefficients to receiving cards and modules based on their physical addresses or the topology.
 Type “admin” with your keyboard. A **Save Calibration Coefficients to Module** button is displayed.
 When **Auto Upload Module** is selected, if the system detects that a cabinet ID is changed after the control system is powered on, the calibration coefficients in the module flash memory will be automatically uploaded to the receiving card.

Notes
Types and causes of module flash memory check errors:
- Hardware Fault: Screen configuration or flash topology is not consistent with the actual condition.
- Communication Error: There is a problem with hardware connection.
- Flash Topology Error: The module does not have flash memory or no flash topology is configured in **Screen Configuration**.

Related Operations
During coefficient management, three methods are provided for you to select an area for coefficient management.

Figure 6-4 Selecting an area for coefficient management

- **Full screen:** Manage the coefficients of the entire screen.
- **Select by Pixel area:** Manage the coefficients of a specified area.
- **Select by Topology or List:** Manage the coefficients of a specified cabinet, module or pixels. For a standard screen, a cabinet topology is displayed. For a complex screen, a cabinet list is displayed. If it is not convenient...
to select an area with the software, you can select **Select Area on Screen** to select the area on the display window.

Two methods are provided for calibration coefficient adjustment. You can display or hide the color window during the adjustment.

Simple Adjustment

As shown in Figure 6-5, drag the slider to adjust the values of red, green and blue. Click **Advanced Adjustment** to open advanced adjustment page.

Advanced Adjustment

As shown in Figure 6-6, drag the slider to adjust the brightness, saturation and hue for red, green and blue, and adjust color temperature. Click **Simple Adjustment** to go back to simple adjustment page.

Figure 6-5 Simple adjustment

![Simple Adjustment](image1)

Figure 6-6 Advanced adjustment

![Advanced Adjustment](image2)
6.1.4 Managing Double Calibration Coefficients

Applications

View calibration coefficients saved in the application area and factory area, get calibration coefficients in the factory area, and save calibration coefficients to the factory area.

Applicable Products

The A5, A5s, A7, A7s, A8, A8s, A9s and A10s Plus receiving cards

Prerequisites

None

Related Information

Calibration coefficients can be saved in both the factory area and application area of a receiving card. A copy of coefficients is saved in the factory area before a cabinet leaves the factory. The calibration coefficients usually used by users are in the application area. If necessary, calibration coefficients in the factory area can be restored to the application area.

Operating Procedure

Step 1 On the menu bar, choose **User > Advanced Synchronous System User Login**. Enter the password and click **OK**. The default password is “admin”.

Step 2 Click **Calibration** or choose **Tools > Calibration** on the menu bar.

Step 3 Select the **Single-Screen Mode** tab or **Combined-Screen Mode** tab.

Step 4 In single-screen mode, select a communication port and a screen. In combined-screen mode, skip this step.

Step 5 Select the **Double Calibration Coefficients** tab.

Step 6 Perform the following operations as required.
View calibration coefficients in application area
Click View calibration coefficients in application area, select Disable Calibration, Brightness Calibration or Chroma Calibration, and view the application result of calibration coefficients on the screen.

View calibration coefficients in factory area
Click View calibration coefficients in factory area, select Disable Calibration, Brightness Calibration or Chroma Calibration, and view the application result of calibration coefficients on the screen.

Get calibration coefficients in factory area
Click Acquisition of factory area correction factor to restore the calibration coefficients from factory area to application area.

Save calibration coefficients to factory area
Type "admin" with your keyboard. A Save coefficients to factory area button is displayed. Click the button to save the calibration coefficients in the application area to factory area.

6.2 Adjusting Brightness

6.2.1 Adjusting Brightness Manually

Applications
Manually adjust the screen brightness, Gamma, color temperature and color space to change the brightness and chroma expressiveness of the screen in real time, meeting the environment condition and user needs.

Applicable Products
- Individual Gamma adjustment for RGB:
 - If the bit depth of input source for the sending card is 8bit, the applicable receiving cards include the A4, A4s, A5, A5s, A7, A7s, A8, A8s, A9s and A10s Plus.
 - If the bit depth of input source for the sending card is 10bit or 12bit, the applicable sending cards include the MCTRL1600, MCTRL4K, MCTRL660 PRO, KT8, K16, NovaPro UHD Jr and MCTRL R5.
- Other functions: Applicable to all receiving cards and sending cards

Prerequisites
If individual Gamma adjustment for RGB is used, the module driver chip cannot be ICN2053.

Related Information
Manual brightness adjustment is to set screen brightness manually. After NovaLCT is opened, you can directly perform the steps in Operating Procedure. After logging in to NovaLCT, you can also perform the operations in Custom Gamma, Custom Color Temperature and Custom Color Space of this section.

Operating Procedure

Step 1 Click ☀ or choose Settings > Brightness on the menu bar.
Step 2 Select Manual Adjustment.
Step 3 Drag the slider to adjust brightness and select Grayscale or Contrast.
Step 4 Click to expand the advanced settings shown in Figure 6-8 and perform the following operations as required.
Figure 6-8 Manual brightness adjustment

- **Adjust Gamma**
 Drag the slider to adjust Gamma value.

- **Adjust color temperature**
 Choose **Rough Adjustment** and drag the slider to adjust the color temperature. Or choose **Precise Adjustment** and click a custom color temperature to use it, such as .

- **Adjust color space**
 Disable color space, enable a standard color space (PAL/NTSC), or enable a custom color space, such as .

Notes
After logging in to NovaLCT, you can set custom Gamma, custom color temperature and custom color space. For detailed operations, see Custom Gamma, Custom Color Temperature and Custom Color Space.

Step 5
After the configuration is done, click **Save to HW** to save the configuration to the hardware.

Custom Gamma

Step 1
On the **Gamma Adjustment** page, select **Custom Gamma Adjustment**.

Step 2
Click **Configuration** to open the dialog box shown in Figure 6-9.
Step 3 If the control system supports individual Gamma adjustment for RGB, choose to adjust the Gamma curve for red, green and blue individually. Otherwise, skip this step.

Step 4 Perform any of the following operations as required to configure the Gamma curve.

- **Load a Gamma configuration file**
 Click **Load** to load a Gamma configuration file.

- **Adjust the Gamma curve manually**
 Drag the slider to adjust the Gamma curve.

- **Adjust the Gamma table manually**
 Double click a value in the Y column to edit the value, and select a value in the Y column and click **Move Up** or **Move Down**.

Step 5 Set relevant parameters.

- Grayscale Bit Value: Use the default value.
- X-axis Range: It indicates the range of X-axis for Gamma curve. The X-axis ranges for 8-bit, 10-bit and 12-bit input sources are 0–255, 0–1023 and 0–4095 respectively.
- Y-axis Range: It indicates the range of Y-axis for Gamma curve. The range is always 0–65535.
- Recommended Gamma: The original mode is contrast preferred and Mode A is grayscale preferred. Mode B falls between those two modes.
- Picture Quality: When the Gamma curve is in Mode A or B, the picture quality can be set to soft mode or enhanced mode.

Step 6 After the settings are done, click **Send** to send the configuration to the hardware.

Step 7 (Optional) Click **Save** to save the Gamma information as a configuration file.

Custom Color Temperature

Step 1 On the **Color Temperature Adjustment** page, select **Precise Adjustment**.

Step 2 Click **+** to open the dialog box shown in Figure 6-10.
Step 3 If you have a color temperature configuration file (.fcg), click **Import** to complete the configuration quickly. If you do not have a color temperature configuration file, continue performing the following operations to manually complete the configuration.

Step 4 Click **Add** to open the dialog box shown in Figure 6-11.

Step 5 Click **Add Brightness** to open the dialog box shown in Figure 6-12.
Step 6 Add color temperature information corresponding to the specified brightness values.

Current Gain is a color temperature parameter of modules. This parameter can be set when supported by module chips. **Brightness Component** is a color temperature parameter of receiving cards. If **Synchronize** is selected, the R, G and B parameters will be set to the same value. You can edit, delete and clear the color temperature information if necessary.

Step 7 After the configuration is done, click **Save to local** to save the custom color temperature. A corresponding button will be displayed next to **Precise Adjustment**.

Step 8 (Optional) Click **Export** to save the current color temperature information as a configuration file.

Custom Color Space

Step 1 On the **Color Space Adjustment** page, click + to open the dialog box shown in Figure 6-13.
Step 2 Set the original color space.

The white triangle represents the original color space. The target color space is configured based on the original color space. You are advised to use a colorimeter to measure the original color space of the screen and then enter the measured values in the original color space table.

Step 3 Perform any of the following operations as required to set custom color space.

- Select a standard color space
 Click PAL or NTSC to use one of the standard color spaces.

- Select an existing custom color space
 If there is a custom color space, click to use it. If not, click Import to import a custom color space, or click to create a custom color space and then click to use it.

- Adjust the color space diagram manually
 Drag vertexes of the black triangle in the diagram on the left to adjust the target color space. If Draw black lines and common color temperature points is selected, a black curve (color temperature curve) and some common color temperature points (solid round spots) will be displayed in the diagram.

- Adjust the color space values manually
 Change the parameter values in the target color space table for precise adjustment.

Step 4 After the configuration is done, select Enable color space adjustment to apply the target color space, and click Send to send the configuration information to the hardware.

Step 5 Click Save to HW to save the information to the hardware.

6.2.2 Adjusting Brightness Automatically

Applications

Set rules for automatic brightness adjustment, allowing NovaLCT or sending cards to automatically adjust screen brightness.

Applicable Products

All sending cards

Prerequisites

When screen brightness is adjusted based on ambient brightness, a light sensor must be connected to the sending card or multifunction card.

If the light sensor is connected to the multifunction card, peripheral configuration needs to be completed on multifunction card management page.

Related Information

After you configure the automatic brightness adjustment, two adjustment modes are provided.

- Software adjustment mode
 NovaLCT automatically adjusts screen brightness. This mode takes effect when the control computer is connected to the sending card and monitoring is running. Combined-screen brightness, color temperature and Gamma must be adjusted and night mode must be enabled with the software.

 The adjustment process will be recorded as a log which can be exported and viewed in iCare of VNNOX cloud platform.

- Hardware adjustment mode
 The sending card automatically adjusts screen brightness. This mode takes effect when the control computer and sending card are disconnected or monitoring stops running.

 Combined screens do not support this mode.

 The adjustment process will not be recorded as a log.
Operating Procedure

Step 1 Click or choose **Settings > Brightness** from the menu bar.

Step 2 Select **Auto Adjustment**.

Step 3 Click **Wizard Settings**.

If the auto adjustment table is configured, you can add, delete and modify items in the table, or click **Light Sensor Configuration** to set light sensor information.

Step 4 Select an adjustment mode as required and click **Next**.

Advanced adjustment

Screen brightness is adjusted by time periods. You can choose to adjust screen brightness according to specified brightness or ambient brightness.

- **Click Add.**
- **Set the start time and adjustment method and then click OK.**

- **Click More Settings** to set color temperature and Gamma value. The options in the drop-down box next to color temperature are the custom color temperatures.
- **After the settings are done, click Cancel to close the dialog box.**
As shown in the figure below, the two configuration items denote that screen brightness will be adjusted to 80% from 8:00 to 18:00 and adjusted to the corresponding values in the brightness mapping table according to ambient brightness from 18:00 to 8:00 of the next day.

<table>
<thead>
<tr>
<th>Start Adjusting Time</th>
<th>Adjustment Method</th>
<th>Brightness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00</td>
<td>Specified Brightness</td>
<td>80</td>
</tr>
<tr>
<td>18:00</td>
<td>Environment Brightness</td>
<td>-</td>
</tr>
</tbody>
</table>

e. If there is no **Environment Brightness** under **Adjustment Method**, click **Finish**. If there is **Environment Brightness** under **Adjustment Method**, click **Next** and complete light sensor settings according to the description in **Light Sensor Adjustment** below.

Light sensor adjustment

Screen brightness is adjusted according to ambient brightness. Set the corresponding relations between ambient brightness and screen brightness in the ambient brightness mapping table.

a. Click **Light Sensor Test** to test the light sensors connected to the control system, including the light sensors connected to all sending cards and multifunction cards.

If you want to clear the ineffective light sensor information, click **Clear Failed Light Sensor Information**.

b. (Optional) Select **When the light sensor fails, the brightness should be adjusted to** and set a brightness value.

If this option is not selected, the screen brightness will keep the last updated brightness value when the light sensor fails.

c. Click **+** or **-**, or click **Fast Section Division** to set the brightness mapping table.

Fast section division can equally divide the ambient brightness range and screen brightness range into the specified number of segments.

d. (Optional) Select **Opening** to enable night mode and set the maximum brightness of the specified time period.

When surrounding lights interfere with the light sensor or an exception occurs when the light sensor is collecting ambient brightness data, screen brightness may be too high. This can be avoided in night mode. If the start time and end time are the same, night mode takes effect all the time.

e. Click **Finish**.

Step 5 After the settings are done, click **Save**.
Step 6 (Optional) Click **Export Log** to export the brightness adjustment log in software adjustment mode.

Step 7 (Optional) Set the advanced parameters of auto brightness adjustment.

1. On the taskbar, click 🔄 and choose **Brightness Advanced Settings**.

2. Select **Enable Brightness Gradient**. Screen brightness will gradually change to the target value.

3. Set the cycle and number of times for the light sensor to measure ambient brightness.

 For example, if the cycle is 60 seconds and number of times is 5, the light sensor will measure ambient brightness every 60 seconds. After 5 times of measurement, NovaLCT will calculate the average of the measured values without the maximum and minimum ones. This average value is ambient brightness. If multiple light sensors are connected, NovaLCT will calculate the average of all the ambient brightness values.

4. Click **Save**.

6.3 Adjusting Multi-batch Cabinets

Applications

Adjust the chroma of cabinets or modules from multiple batches to make the overall screen chroma more uniform.

Applicable Products

All receiving cards

Prerequisites

None

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose **Tools > Multi-batch Adjustment**.

Step 2 Select **Manual Adjustment**.

If you have a configuration file, select **Apply Adjustment File** to quickly complete chroma adjustment for cabinets from multiple batches.
Step 3 If no colorimeter is connected, select **No Colorimeter**. If a colorimeter is connected, select the colorimeter type and set its measurement accuracy.

Step 4 Click **Next**.

Step 5 Set the parameters of a sample batch.

Figure 6-15 Setting sample batch

1. (Optional) Select **Fixed Batches, Adjust Other Batches to The Batch**.
 Fixed sample batch is for reference and cannot be adjusted. All the sample batches can be adjusted without a fixed batch.
2. Select a communication port and screen.
3. Select a position to display image.
4. Click + to specify an operating area for the fixed sample batch.

- Pixel: Perform operations in a specified area.
- Topology or List: Perform operations on a specified module or pixels. If it is not convenient to specify an area with the software, you can select Select Area on Screen to specify an area on the display window.

5. Click , , and in order to measure Brightness, Cx and Cy by using a colorimeter and enter the measured values. If no colorimeter is connected, skip this step.

Step 6 Set other sample batches.

1. Import, add or delete other sample batches as required.
2. Select a sample batch and specify an operating area by following 4 in Step 5.
3. Enter the values measured by the colorimeter by following 5 in Step 5. If no colorimeter is connected, skip this step.

Step 7 Click Next.

Step 8 View the preliminary adjustment result, select a result option and click Next. If no colorimeter is connected, skip this step.
Selecting **Automatic Switching** automatically switches the display color. Selecting **Enable Correction** allows you to view the calibration result.

- If the calibration result is satisfactory, go to **Step 10**.
- If the calibration result is not satisfactory, go to **Step 9**.

Step 9 Fine tune the sample batch.

1. Select the sample batch to be displayed.
2. Select a display color.
3. Drag the slider to adjust brightness.
4. Select **RGB** or **HIS** and adjust the coefficients of red, green and blue.
You can click **Withdraw** to restore the coefficients.

5. (Optional) Click **Balanced** and perform balanced adjustment for the sample batch in the dialog box that appears. Click **Balanced Description** to see the detailed description of balanced adjustment.

![Balanced Adjustment](image)

6. Click **Next**.

Step 10 Select **Adjust Color Temperature**. Drag the slider to adjust color temperature and view the effect.

![Color Temperature Adjustment](image)

Step 11 After the adjustment is done, click **Next**.

Step 12 Click **Add Areas** to select the areas where the adjustment effect will be applied.
Step 13 Click **Display screen on LED display** to view the adjustment effect.

- Enable Correction: After this option is selected, you can view the calibration result.
- Display All Batches: After this option is selected, all sample batches are displayed.

Step 14 Click **Apply** or **Apply All**.

Step 15 Click **Save to Flash** to save the configuration to the hardware.

Step 16 (Optional) Click **Save File** to save the configuration as a file (.lxy).

Step 17 Click **Complete** and **OK**.

6.4 Adjusting Dark or Bright Lines

Applications

Adjust dark or bright lines between cabinets or modules to improve visual experience.

Applicable Products

All receiving cards

Prerequisites

None

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose **Tools** > **Quickly Adjust Dark or Bright Lines** > **Adjust Dark or Bright Lines**.

If you have a configuration file for dark or bright line adjustment, choose **Recover Dark or Bright Lines** to quickly complete dark or bright line adjustment.

Step 2 Click the corresponding **Quickly Adjust** button according to the receiving card type and adjust dark or bright lines.
Figure 6-20 Adjusting dark or bright lines

Common version

- Select a communication port and screen.
- Select a position to display image, including main screen and extended screen.
- To adjust dark or bright lines between modules, select **Module-level Adjustment**, set module size and then click **Drawing**. To adjust dark or bright lines between cabinets, skip this step.
- On the topology, select a target to adjust.
 - **Selection methods:** Click borders and corners, click and drag the mouse to select borders and corners, or double click borders to select pixels.
 - **Deselection methods:** Click selected borders and corners to deselect them or click ℄ to deselect all the selected borders and corners.
 - **Topology zooming:** Click § or ¶.
 - **Selection options:** Select **Row Direction** to select horizontal borders and corners by clicking and drag the mouse. Select **Column Direction** to select vertical borders and corners by clicking and drag the mouse.
- (Optional) Select **Display Serial Number**, **Lock Selection** or **Hide Topology Graph** to display the cabinet or module numbers on the display window and lock or hide the topology.
- Select **Red, Green and Blue Priority** to adjust the coefficients of red, green and blue, or select **White Priority** to adjust the overall coefficient.
- After the settings are done, click **Save to HW** to save the configuration to receiving cards.
- (Optional) Click **Save to File** to save the configuration as a file.
Notes

- Clicking **Save to user area** saves the configuration to the application areas of receiving cards.
- Clicking **Restore to user area** restores the configuration of dark or bright lines according to the application areas of receiving cards.

Supported receiving cards: Ax series, MRV308, MRV328, MRV316, MRV366, DF30, Axs V4.4.0.0 and later

- Click to select module mode or click to select cabinet mode.
- Select a display color.
- Drag the slider to adjust screen brightness.
- Click and choose to use the main screen or extended screen from the drop-down box for display.
- : Disable calibration, select chroma calibration or brightness calibration.
- : Show or hide the display window.
- Click or select the borders to be adjusted.
 - Select all the borders.
 - Select horizontal borders.
 - Select vertical borders.
 - Show or hide the flashing dotted borders on the display window.
 - Show or hide module or cabinet numbers.
 - Zoom out the topology.
 - Zoom in the topology.
 - Map the topology to the display window (1:1).
 - Auto fit the topology to the canvas.
- Set the precision of adjustment and drag the slider to adjust the coefficient.
- After the settings are done, click **Save to HW** to save the configuration to the hardware.

Note

If receiving cards are AXs V4.5.0.0 and later, you can select **No Video Source** to use hardware for display. Receiving cards do not require an input video source.
6.5 Correcting Brighter Pixels

Applications

Correct brightness of pixels that are brighter or darker than normal to fix the problem that the pixel brightness of the screen is not uniform after calibration.

Applicable Products

All receiving cards and sending cards

Prerequisites

Cabinets of the screen are calibrated or the entire screen is calibrated and the cabinet or screen calibration database file is saved.

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose **Tools > More > Brighter Pixel Correction**.

Step 2 Select a screen.

Step 3 Select a position to display image.

Step 4 Set the brightness of the display window.

Step 5 Select a database type, for example, **Cabinet**.

Step 6 Click **Browse** and select a database file. For example, select a cabinet calibration database file and click **Open**.

Step 7 On the **Topology** page, select an area and then select the **Simulation Diagram** tab.

Step 8 Click brighter pixels or select the area where there are brighter pixels and click ✔.

- ![Click to select a brighter pixel.](image)
- Select brighter pixels by clicking and dragging the mouse to form a selection box.
6.6 Setting Advanced Color

Applications

Improve the display effect of a screen by setting screen brightness, color space, color temperature, etc.

Applicable Products

- Color adjustment: Applicable to the NovaPro HD
- Other functions: Applicable to all sending cards

Prerequisites

None

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose **User > Advanced Synchronous System User Login**. Enter the password and click **OK**. The default password is “admin”.

Step 2 Choose **Settings > Advanced Color Configuration**.

Step 3 Click **Import** to quickly complete the configuration or continue performing the following operations to complete the configuration manually.

Step 4 On the **Factory Setting** tab page, adjust parameters and then click **Save to HW**.
Current Gain: This is a module parameter and can be set when supported by module chips. Clicking Default Value can reset the value.

RGB Brightness: This is a receiving card parameter. If Synchronize is selected, the R, G and B parameters will be set to the same value.

Step 5 Select Configure Color Space to set color space.
1. Set the original color space.
 The white triangle represents the original color space. The target color space is configured based on the original color space. You are advised to use a colorimeter to measure the original color space of the screen and then enter the measured values in the original color space table.

2. Perform any of the following operations as required to set custom color space.
 - Select a standard color space
 Click **PAL** or **NTSC** to use one of the standard color spaces.
 - Select an existing custom color space
 If there is a custom color space, click to use it. If not, click **Import** to import a custom color space, or click **Add** to create a custom color space and then click to use it.
 - Adjust the color space diagram manually
 Drag vertexes of the black triangle in the diagram on the left to adjust the target color space. If **Draw black lines and common color temperature point** is selected, a black curve (color temperature curve) and some common color temperature points (solid round spots) will be displayed in the diagram.
 - Adjust the color space values manually
 Change the parameter values in the target color space table for precise adjustment.

3. After the configuration is done, select **Enable color space adjustment** to apply the target color space, and click **Send** to send the configuration information to the hardware.

4. Click **Save to HW** to save the configuration to the hardware.

Step 6 Select **Color Temperature Table** to set color temperature.

1. Click **Add** to open the dialog box shown in Figure 6-26.
2. Click **Add Brightness** to open the dialog box shown in Figure 6-27.
3. Add color temperature information corresponding to specified brightness values.

 Current Gain is a color temperature parameter of modules. The parameter can be set when module chips support current gain. **Brightness Component** is a color temperature parameter of receiving card. If **Synchronize** is selected, the R, G and B parameters will be set to the same value. You can edit, delete and clear the color temperature information if necessary.
4. After the configuration is done, click **Save to local** to save the custom color temperature.

![Figure 6-26 Adding color temperature information](image)

![Figure 6-27 Adding brightness information](image)

Step 7 For the NovaPro HD, select **Color Adjustment** to set the hue, contrast and saturation of the screen. This function is not available for other products.
Step 8 (Optional) Click Export to save the configuration as a file.

6.7 Adjusting Screen Effect

Applications

Enable 18bit+, ClearView and low latency, and set HDR parameters to improve display effect.

Applicable Products

- 18bit+: Applicable to the A8, A8s and A10s Plus receiving cards
- ClearView: Applicable to the A8, A8s and A10s Plus receiving cards
- Low latency: Applicable to the A6s, A8s, A10s Plus and AT60 receiving cards, and the MCTRL4K, MCTRL1600 and MCTRL660 PRO sending cards
- HDR: Applicable to the sending cards that support 10-bit or 12-bit input sources

Prerequisites

- During HDR settings, the hardware must support HDR and an HDR10 or HLG input source is also required.
- HDR and ClearView cannot be enabled simultaneously.
- Low latency and 3D function cannot be enabled simultaneously.

Related Information

18bit+ can improve LED display grayscale by 4 times, avoiding grayscale loss due to low brightness and allowing for smoother images.
ClearView make texture, size, and contrast adjustments on different areas of the display image, creating a more realistic image.
Enabling either sending card low latency or receiving card low latency can reduce the delay by one frame. Enabling both can reduce the delay by two frames.
Operating Procedure

Step 1 On the menu bar, choose User > Advanced Synchronous System User Login. Enter the password and click OK. The default password is “admin”.

Step 2 Choose Settings > Adjust screen effect to open the dialog box shown in Figure 6-29.

Figure 6-29 Screen effect adjustment

Step 3 Perform any of the following operations as required.

+ Enable 18-bit mode (18bit+)
 Select Enable 18-bit mode and click Save to HW.

+ Enable ClearView
 Select Enable ClearView, drag the slider to adjust the value and then click Save to HW.

+ Enable low latency
 Select Enable sending card low latency and Enable receiving card low latency or either of them, and click Save to HW. Enabling either of them can reduce the delay by one frame. Enabling both can reduce the latency by two frames.

+ Set HDR parameters
 Select Enable, select HDR10 or HLG from the drop-down box and complete relevant settings.

6.8 Setting Image Booster Engine

After the receiving card parameters are adjusted and the configuration file is generated, you can use the Image Booster Engine to further improve the display effect.
6.8.1 Screen Calibration

Applications

Use a colorimeter to measure the color gamut and grayscale of LED screen, and then set the 22bit+, precise grayscale and color management functions to improve the display color and grayscale precision, and allow for free switching of display color gamut.

Applicable Products

The A8s and A10s Plus receiving cards

Prerequisites

- The receiving card program package is updated.
 - The A8s program package must be V4.6.4.0 or later.
 - The A10s Plus program package must be V4.6.5.0 or later.
- The colorimeter is supported and the colorimeter connection is done.
 Currently supported colorimeters: CA-410, CS-150, CS-100A and CS-2000

Notice

Adjusting receiving card parameters affects the display effect.

Related Information

The Image Booster Engine has the following 3 functions which improve the display effect (the actual effect depends on the driver IC) from different dimensions.

- **Color Management**
 Allow you to freely switch the color gamut of LED display, including multiple standard color gamuts and a custom color gamut, and let the LED display have more precise colors.

- **Precise Grayscale**
 Correct the 65,536 levels of grayscale (16bit) of driver IC individually to fix the display problems at low grayscale conditions, such as brightness spikes, brightness dips, color cast and mottling. This function can also better assist other display technologies, such as 22bit+ and individual Gamma adjustment for RGB, allowing for a smoother and uniform image.

- **22bit+**
 Improve the LED display grayscale by 64 times, avoiding grayscale loss due to low brightness and allowing for a smoother image.

When you measure the color gamut and grayscale of LED screen, you must use the colorimeter to collect the grayscale data of red, green and blue in order. The supported colorimeters are described in Table 6-1. Figure 6-30 uses the CA-410 as an example to show the hardware connection.

<table>
<thead>
<tr>
<th>Model</th>
<th>Measurement Distance (Darkroom)</th>
<th>Data Collection Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-410 (Recommended)</td>
<td>Touch the screen</td>
<td>About 7 min</td>
</tr>
<tr>
<td>CS-150</td>
<td>30 cm</td>
<td>About 3–4 h</td>
</tr>
<tr>
<td>CS-100A</td>
<td>1 m</td>
<td>About 3–4 h</td>
</tr>
<tr>
<td>CS-2000</td>
<td>1 m</td>
<td>About 3–4 h</td>
</tr>
</tbody>
</table>
Operating Procedure

Step 1 On the menu bar, choose User > Advanced Synchronous System User Login. Enter the password and click Login.

The default password is "admin".

Step 2 On the main window, click next to the rightmost function icon to open the drop-down list and then click Image Booster Engine.

Step 3 Select a communication port and a screen that you want to calibrate.

Step 4 Click Calibrate to open the function page shown in Figure 6-32.
NovaLCT will connect to the colorimeter automatically. If you see , the connection is successful. If the connection fails, see 12.4 Failed to connect colorimeter to troubleshoot the problem.

To disconnect the colorimeter, click Disconnect.

Step 5 Do one of the following operations as required.

- If you have an image quality adjustment file (.vglc), click Import Quality Adjustment File and go to Step 8.
- If you do not have the file, go to Step 6.

Step 6 Set the measurement options. You can select one or both.

- Measure color gamut: Measure the original and target color gamuts of the LED screen.
- Measure grayscale: Measure the grayscale of the LED screen.

Two methods of setting the target color gamut are provided:

- Use a standard color gamut
 NovaLCT has used some standard color gamuts by default. If you want to change any of them, click the color gamut name to open the page shown below, select a color gamut and click OK.

- Customize a color gamut
Click **Custom Color Gamut**, set the baseline gamut and color gamut name, and double click the cells to change the values. If you want to adjust the color temperature value, select **Color Temperature** and set it. After the settings are done, click **OK**.

![Custom Color Gamut](image)

Step 7 Click **Start** to start measuring.

During the measuring, you can pause or stop measuring. If you manually stop measuring, or the measuring stops or exits due to exceptions, next time when you want to measure color gamut and grayscale, you can choose to continue measuring by resuming the interrupted measuring.

Step 8 Select a color gamut, set the precise grayscale and 22bit+ switches, and view the effect on the screen.

If the BT.709 color gamut is selected, the **Color Enhancing** switch is available, as shown in **Figure 6-33**. Turning on the switch can enhance the color display effect.

![Figure 6-33 Color enhancing](image)

After you select a gamut, the **Color Analysis Briefing** tab page will display the related information.

- **Management Time**: The date when the measuring is done
- **Gamut Coverage**: The LED screen color gamut coverage of the target color gamut, expressed as a percentage
- **Gamut Usage**: The LED screen color gamut coverage of the original color gamut, expressed as a percentage
- **Whitepoint**: The coordinates of white in the color gamut diagram
- **Measured Brightness**: The maximum brightness of whitepoint. Different color gamuts have the same maximum brightness of whitepoint.
The 22bit+ function can be enabled alone. However, if you want to enable the precise grayscale function, the 22bit+ function must be also enabled.

Step 9 Repeat **Step 8** to change the color gamut and the switch status until the display effect meets the actual needs.

Step 10 (Optional) Click **Export Quality Adjustment File** to save the configuration information as a file.

Step 11 If you want to evaluate the color precision, do the following:

1. Click **Evaluate Color Precision**.
2. Select a color gamut and click **Start Evaluation**.
3. After the evaluation is done, click **OK**.
4. Select **Display Demo**.
5. Click any of the colors in the table and check their effect on the LED screen. Or, you can set the auto color switching interval and then click **Start Demo** to check the effects of all colors on the screen.

CIE31: The standard value of brightness, Cx and Cy of the color

www.novastar.tech
- Measured Value Before MGMT.: The measured value of brightness, Cx and Cy of the color in the original color gamut
- Measured Value: The measured value of brightness, Cx and Cy of the color in the target color gamut
- DeltaE: The deviation between the measured value and standard value

6. Deselect Display Demo, click Export Report to save the evaluation result as a file.

6.8.2 Quick Setting

Applications

Quickly set the 22bit+, precise grayscale and color management functions of Image Booster Engine to improve the display color and grayscale precision, and allow for free switching of display color gamut.

Applicable Products

The A8s and A10s Plus receiving cards

Prerequisites

- The receiving card program package is updated.
 - The A8s program package must be V4.6.4.0 or later.
 - The A10s Plus program package must be V4.6.5.0 or later.
- Before you set the precise grayscale and color management functions, the screen calibration must be done. For screen calibration operations, see 6.8.1 Screen Calibration.

Notice

After the Image Booster Engine is set, adjusting receiving card parameters will affect the display effect.

Related Information

The Image Booster Engine has the following 3 functions which improve the display effect (the actual effect depends on the driver IC) from different dimensions.

Color Management

Allow you to freely switch the color gamut of LED display, including multiple standard color gamuts and a custom color gamut, and let the LED display have more precise colors.

Precise Grayscale

Correct the 65,536 levels of grayscale (16bit) of driver IC individually to fix the display problems at low grayscale conditions, such as brightness spikes, brightness dips, color cast and mottling. This function can also better assist other display technologies, such as 22bit+ and individual Gamma adjustment for RGB, allowing for a smoother and uniform image.

22bit+

Improve the LED display grayscale by 64 times, avoiding grayscale loss due to low brightness and allowing for a smoother image.

Operating Procedure

Step 1 On the menu bar, choose User > Advanced Synchronous System User Login. Enter the password and click Login.

The default password is “admin”.

Step 2 On the main window, click next to the rightmost function icon to open the drop-down list and then click Image Booster Engine.

Step 3 Select a communication port and a screen that you want to set.
Step 4 Select a color gamut, set the precise grayscale and 22bit+ switches, and view the effect on the screen.

After you select a gamut, the page will display the related information.

- **Gamut Coverage**: The LED screen color gamut coverage of the target color gamut, expressed as a percentage
- **Color Temperature**: The color temperature value
- **Whitepoint Coordinates**: The coordinates of white in the color gamut diagram

The 22bit+ function can be enabled alone. However, if you want to enable the precise grayscale function, the 22bit+ function must be also enabled.

Step 5 Repeat Step 4 to change the color gamut and the switch status until the display effect meets the actual needs.
7 Screen Monitoring

7.1 Registering Screens with iCare

Applications

Register yours screens with iCare of NovaStar VNNOX cloud platform to perform centralized monitoring of the working status of all screens from a remote place.

Applicable Products

All screens

Prerequisites

A VNNOX account that can be used normally is available.

Related Information

When multiple screens are connected to the control PC, all these screen will be registered with VNNOX.

Operating Procedure

Step 1 Click 🔄 or choose Tools > Monitoring on the menu bar.

Step 2 Click Configuration.

Step 3 On the Refresh Period tab page, select Link to NovaICare, and then click Save and OK.

Step 4 On the desktop taskbar, right click 🔄 select Exit and click OK.

Step 5 Click 🔄 to start the monitoring function again.
Step 6 Click or choose **Settings > Cloud Monitoring** on the menu bar.

![Figure 7-2 Registering screens with iCare](image)

Step 7 Click **Modify Registration**.

![Figure 7-3 Changing registration information](image)

Step 8 Select a server, and enter the VNNOX user name and the screen name. Click **Register**.

Step 9 After the registration is done, click **OK**.

7.2 Monitoring Hardware

7.2.1 Monitoring Applications

Applications

Configure the monitoring parameters to monitor the statuses of sending cards, receiving cards, receiving card temperatures, monitoring devices, as well as humidity, smoke, fans, power supplies, cables, cabinet doors, modules, iCare within the control system, in order to detect abnormalities and handle them in time.

Applicable Products

- Use monitoring card for monitoring: Applicable to the MON300 monitoring card. This card works with the MRV320 receiving card.
Use smart modules for monitoring: Applicable to the A4, A4s, A5, A5s, A7, A7s, A8, A8s, A9s, A10s Plus, XC200, XC100 and B4s receiving cards. The smart module monitoring function is a customized function of the receiving cards.

Use hub products for monitoring: Applicable to the A4, A4s, A5, A5s, A7, A7s, A8, A8s, A9s, A10s Plus, XC200 and XC100 receiving cards. Using hub product for monitoring is an optional function of the receiving cards.

Prerequisites

- If you want to use the monitoring function of monitoring card, a monitoring card should be used between the module and receiving card.
- If you want to use the email service, the SMTP server address and port must be known in advance.

Related Information

When the monitoring card is used, hub monitoring and smart module cannot be used. Hub monitoring and smart module can be used simultaneously.

Operating Procedure

Step 1 Click or choose Tools > Monitoring on the menu bar.

Step 2 Choose Monitoring to open the monitoring page.

You can also right click on the desktop taskbar and select Open MonitorSite to open the monitoring page.
Figure 7-5 Monitoring

[Image of Monitoring Tool]

Note:
- Click **Monitoring Refresh** to manually refresh the monitoring information.
- On the desktop taskbar, right click and select **Reload Screen** to refresh the receiving card topology diagram.

Step 3 Click the monitoring item on the left or at the bottom of the page to view the detailed monitoring information.

Step 4 Click **Configuration** to set the monitoring parameters.

Refresh Period

Set the necessary items as follows and click **Save** to save the settings.
Select **Automatic Refresh** to set the refresh period. The monitoring information will be refreshed based on the set time period. If the screen is registered with iCare, this item must be selected.

- Set the reread times when the reading of the monitoring information from the receiving card fails.
- Select **Link to NovaiCare** to enable iCare to get the monitoring information.

Hardware Settings

- **Refresh Period**: Select the refresh period. The monitoring information will be refreshed based on the set time period.
- **Connect to Monitoring Card**: Set the monitoring items. Click **Setting** to set the number of monitoring cards connected to each cabinet. The number is 0 or 1.
- **Connect to HUB Monitoring**: Set the monitoring items.
- **Connect to Smart Module**: Set the monitoring items.
- **Connect to HUB Monitoring** and **Connect to Smart Module**, and then set the monitoring items.

Alarm

- **Refresh Fun**: Set the alarm thresholds for temperature, fan rotating speed, and voltage. When the threshold value is exceeded, faults or alarms will be displayed. After the configuration is done, click **Save** to save the settings.

Monitoring Control
Set the rules for automatic control of smoke, temperature and dual backup power supply. If the control type is set to smoke, a multifunction card must be configured in advance. After the settings are done, click **OK**.

Email

Select **Enable Email Notification**. Set the necessary items as follows and click **Save** to save the settings.

- Set the condition for sending an email notification, namely how many times the same fault or alarm occurs consecutively.
- Select **Enable System Recovery Notification** to send email notification when the fault or alarm recovers.
- Select **Enable Sending System Report Email** and click **Send system report email regularly** to set the email sending period and time.
- Click **Modify Sender** to change the email service related settings.
- Add, edit or delete the recipients.
- Set where the email is sent from.

Email Log
7.2.2 Monitoring (Trial)

Applications

Configure the monitoring parameters to monitor the statuses of sending cards, receiving cards, receiving card temperatures, monitoring devices, as well as humidity, smoke, fans, power supplies, flat cables, cabinet doors, modules, etc. within the control system, in order to detect abnormalities and handle them in time.

Applicable Products

- Use monitoring card for monitoring: Applicable to the MON300 monitoring card. This card works with the MRV320 receiving card.
- Use smart module for monitoring: Applicable to the A4, A4s, A5, A5s, A7, A7s, A8, A8s, A9s, A10s Plus, XC200, XC100 and B4s receiving cards. The smart module monitoring function is a customized function of the receiving cards.
- Use hub product for monitoring: Applicable to the A4, A4s, A5, A5s, A7, A7s, A8, A8s, A9s, A10s Plus, XC200 and XC100 receiving cards. Using hub product for monitoring is an optional function of the receiving cards.

Prerequisites

If you want to use the monitoring function of monitoring card, a monitoring card should be used between the module and receiving card.

Related Information

When the monitoring card is used, hub monitoring and smart module cannot be used. Hub monitoring and smart module can be used simultaneously.

Operating Procedure

Step 1 Click Monitoring or choose Tools > Monitoring on the menu bar.
Step 2 Choose **Monitoring (Trial)** to open the monitoring page.

Step 3 Add a monitoring page.

1. On the top right of the page, click +.
2. Right click the monitoring page name and choose **Rename** from the displayed menu.
 In the displayed menu, you can also choose to refresh or delete the monitoring page.
3. Enter a name and press **Enter** or click on the other position on the page.
 If necessary, you can add multiple monitoring pages. The figure below has two monitoring pages added and their names are **Home0** and **Home1**, respectively.
Step 4 Add a monitoring item.

1. In the dashed box, click + to open the Add Monitoring Item dialog box.

![Add Monitoring Item dialog box](image)

2. Select the communication port and monitoring grade, set a title and click Add.
 The Backup RV Card button is currently unavailable.

3. Click OK.
 If necessary, you can add multiple monitoring items.

Step 5 Check the monitoring information.

1. Click Refresh data to obtain the monitoring information.

2. Check the monitoring information summary.

![Monitoring Information Summary](image)

The displayed items in the summary are relevant to the monitoring parameters. For configuration of monitoring parameters, see Step 6.

Description of the monitoring information summary:

- In the first row of the label, you can see the monitoring information, quantity and name of the sending card. In the figure above for example, you can see that the video source signal of sending card has a fault (), the Ethernet port is normal (), the sending card quantity is 1 and the name is MCTRL660_Pro.

- In the second row of the label, you can see statuses of the receiving card, receiving card temperature, monitoring device, humidity, smoke, fans, power supplies, flat cables, cabinet doors, modules, etc. The figure above indicates that the receiving card status is normal ().

Description of icon colors:

- Green: Normal
3. Click a monitoring item to check the detailed monitoring information.

The displayed items in the detailed information are relevant to the monitoring parameters. For configuration of monitoring parameters, see Step 6.

Description of the detailed information:
- Check the screen brightness and ambient brightness.
- Check the monitoring information of the sending card.
- Check the monitoring information related with the cabinet, receiving card, module and transmission, and perform LED error detection on the module.

Step 6 On the top right of the page, click to configure the monitoring parameters.

Figure 7-8 Monitoring configuration

- **Monitoring Policy**
 Select a refresh method and click Save after the settings are done.
 - Refresh manually: Click Refresh data to manually refresh the monitoring information.
 - Refresh periodically: Set the refresh period and the system will automatically refresh the monitoring information according to the set refresh period.
 - Refresh on schedule: Set the rule of refreshing the monitoring information on schedule.
When failed to refresh monitoring data, refresh xx time(s) again: Set how many times the system rereads the monitoring information from the receiving card when it fails to read the information.

Hardware Configuration

Perform any of the operations below and click **Save** or **Apply to All Screens** after the settings are done.

- Select **Connected with monitoring card** and set the monitoring items. Click **Settings** to set the number of monitoring cards connected to each cabinet. The number is 0 or 1.
- Select **Connected with Hub monitoring** and set the monitoring items.
- Select **Connected with smart module** and set the monitoring items.
- Select **Connected with Hub monitoring** and **Connected with smart module**, and set the monitoring items.

Alarm Threshold

Perform any of the operations below and click **Save** or **Apply to All Screens** after the settings are done.

- Set the alarm thresholds for temperature, fan rotating speed and voltage. When the threshold value is exceeded, faults or alarms will be displayed.
- Set the alarm notification method.

Monitoring Control
Set the rules for automatic control of average temperature, maximum temperature, smoke and backup power supply. If the control type is set to smoke, a multifunction card must be configured in advance. After the settings are done, click **Save** or **Apply to All Screens**.

LED Error Detection

Set the LED error detection parameters. After the settings are done, click **Save** or **Apply to All Screens**.

- **Detection Type**: The detection types supported by the driver chip
- **Threshold Voltage**: The level of the threshold voltage of the driver chip, which can be set based on the information provided by the screen manufacturer
- **Current gain**: Select whether to enable the current gain function. You can adjust the current gain.
8 Screen Management

8.1 Multi-function Card Management

Applications

Configure the multifunction card, and perform power management, monitoring data viewing, peripheral settings, program loading and audio management.

Applicable Products

The MFN300 multifunction card

Prerequisites

Hardware connections for the multifunction card are done.

Related Information

None

Operating Procedure

Step 1 Click or choose Settings > Multi-function Card on the menu bar.

Figure 8-1 Multifunction card management

Step 2 Click Add and select the connection type for the multifunction card.

- Serial Port Connection: Select this option when the serial port of the multifunction card is connected to the USB port of the PC.
- Ethernet Port Connection: Select this option when the Ethernet port of the multifunction card is connected to that of the sending card or receiving card.
You can also remove, refresh or rename the added connections.

For serial port connection, you can perform the following operations:

- Modify Serial Port: Change the current serial port to the one that is not configured for the multifunction card.
- Replace Serial Port: Replace the current serial port with the one that is connected with the multifunction card.

Step 3 For serial port connection, choose a communication port and click **OK**.

For Ethernet port connection, choose a communication port and set other parameters as shown in **Figure 8-2**, and then click **OK**.

Figure 8-2 Adding multifunction cards

![Add Multifunction Card](image)

Figure 8-3 shows the user interface of an Ethernet port connection that is added successfully. The following procedure takes Ethernet port connection as an example to illustrate the function.

Figure 8-3 Ethernet port connection

![Ethernet port connection](image)

Step 4 Use any of the following functions as needed.

- **Power Management**
- Read: Read the time from the multifunction card.
- Set: Set the multifunction card time to the PC time.
- Set Notes: Write notes for the power supplies.
- Start Delay: Set the delay time for powering on the multifunction card.
- Refresh: Read back the multifunction card information.
- Start All: Start all power supplies.
- Emergency Stop: Stop all power supplies. When the emergency stop operation is executed, automatic control is invalid.
- Manual: Start or stop the power supplies manually.
- Automatic Control: Set the auto start and stop time for the power supplies.
- Software Control: Set the power control schedule. Click Edit to customize the power control list. Click View Log to view the power control log.
- Advanced: Set the time for the automatic time synchronization between the multifunction card and PC.

+ Monitoring Data
View the monitoring data of both multifunction card itself and its connected monitoring card.

Peripheral Device

Add the peripheral devices connected to the multifunction card, including the light sensors and external 3D emitters.

Load Program
Click **Refresh** to view the multifunction card model, FPGA version and FPGA note.

Type “admin” to access the options for program loading.

a. Select **Load program for selected Multi-function Card** or **Load all programs for Multi-function Card**.
b. Click **Browse** to select the program package.
c. Click **Change** to load the selected program.
d. Click **Exit** to hide the program loading options.
Set the audio channel connected to the multifunction card, including the independent channel and HDMI channel.

8.2 Multiple-screen Management

Applications

Combine multiple screens into a combined screen, allowing for easier brightness adjustment, screen calibration and monitoring configuration, and higher working efficiency.

Applicable Products

All receiving cards and sending cards

Prerequisites

None

Related Information

The combined screen supports both auto and manual brightness adjustment.

Operating Procedure

Step 1 On the menu bar, choose **User > Advanced Synchronous System User Login**. Enter the password and click **OK**. The default password is "admin".

Step 2 Choose **Settings > Multiple-screen Management**.
Step 3 Set the number of combined screens and click Configuration.

Step 4 Set the combined screen name and number of screens in the combined screen, and then click Configuration.

Step 5 Right click the first screen to pop up the window as shown in Figure 8-6. Choose a communication port and its associated screen.
Step 6 Do the same for other screens of the combined screen.

Step 7 Drag the screen to snap it to other screens.

Step 8 After the settings are done, click **OK**.

8.3 Prestore Screen

Applications

Set the picture displayed on the screen during startup process, or displayed when the Ethernet cable is disconnected or there is no video signal.

Applicable Products

All receiving cards and sending cards

Prerequisites

A picture in BMP, JPG or PNG format is prepared.
Related Information

None

Operating Procedure

Step 1 On the menu bar, choose Settings > Prestore Screen.

Figure 8-8 Prestore picture settings

Step 2 Choose a communication port.

Step 3 Set a prestore picture.

1. Click Browse to select a picture.
2. Set the screen display effect and click Test Effect to view the actual effect.
 - Screen Effect: The selected picture will be stretched, tiled or centered to fit the screen.
 - Single Cabinet Effect: The selected picture will be stretched, tiled or centered to fit each cabinet of the screen.
 Select Extended Screen to display the picture on the extended screen.
3. Click Save to HW to save the prestore picture to the hardware.
4. Click Check Stored Picture to view the current prestore picture.

Step 4 Set the picture displayed during startup process, or displayed when the Ethernet cable is disconnected or there is no video signal.

1. Select Enable in the Start-up Picture area and set how long the prestore picture is displayed for during the startup process.
2. Set whether the screen is black, or displays the last frame image or prestore picture when the Ethernet cable is disconnected.
3. Set whether the screen is black, or displays the last frame image or prestore picture when there is no video signal.
4. After the settings are done, click Send to send the configuration information to the hardware.
5. Click Save to HW to save the configuration information to the hardware.
8.4 Receiving Card Relay

Applications

Set the receiving card relay status to manually connect or disconnect the circuit or let the circuit automatically connect or disconnect, and reset the receiving card running time.

Applicable Products

- Setting the receiving card relay status: Applicable to the MRV350 receiving card
- Resetting the receiving card running time: Applicable to all receiving cards

Prerequisites

None

Related Information

When the relay is closed, the circuit is connected. When the relay is released, the circuit is disconnected. The running time is accumulated as the receiving card works, and will not be reset after the receiving card is powered off.

Operating Procedure

Step 1

On the menu bar, choose **User > Advanced Synchronous System User Login**. Enter the password and click **Login**.

The default password is "admin".

Step 2

Choose **Settings > Receiving Card Relay**.

Figure 8-9 Setting receiving card relay

![Figure 8-9 Setting receiving card relay](image)

Step 3

Choose a communication port and perform the following operations as required.

- **Set receiving card relay**
 - Select **Disconnected** and click **Send** to disconnect the circuit.
− Select Connected and click Send to connect the circuit.
− Select Automatic and set the threshold temperatures for both connecting and disconnecting the relay, and then click Send.

+ Reset receiving card running time
Click Timing Resetting to record the receiving card running time from 0.

8.5 Configuration Information Management

Applications
Import and export the NovaLCT configuration files for quick configuration in NovaLCT.

Applicable Products
N/A

Prerequisites
None

Related Information
None

Operating Procedure

Step 1 On the menu bar, choose Settings > Configure Information Management.

Figure 8-10 Configuration file management

Step 2 Perform any of the following operations as required.

+ Import Configuration
Click Import Configuration, select a file in .zip format, and then click Open.

+ Export Configuration
Click Export Configuration, select the file save path and enter the file name, and then click Save.

8.6 Screen Control

Applications
Set the screen display status. Use the test pattern to perform the screen aging test and detect problems. Control the cabinet LCD backlight status.

Applicable Products

- Flipping: Applicable to the MCTRL660 PRO sending card
- Other functions: Applicable to all receiving cards and sending cards

Prerequisites
None
Related Information

None

Operating Procedure

Step 1 Click or choose **Tools > Screen Control** on the menu bar.

![Figure 8-11 Screen control](image)

Step 2 Perform any of the following operations as required.

- **Set screen display**

 Select Black Out, Freeze or Normal. When Freeze is selected, the screen always displays the current image.

- **Select test pattern**

 Select a test pattern from the drop-down list and click Send. The receiving card will display the selected test pattern on the screen.

- **Set LCD backlight status**

 Select or deselect Turn off cabinet LCD and click Send.

Step 3 When the MCTRL660 PRO is connected, select a flipping option for the image of the Ethernet port as shown in Figure 8-12. The options include Disable, Left-Right, or Top-Bottom. If other devices are connected, skip this step.
8.7 Controller Cabinet Configuration File Import

Applications

Save the receiving card configuration files to the sending card, so as to send the configuration files to the receiving card on site by using the configuration file import function of the sending card.

Applicable Products

- Importing cabinet configuration files: Applicable to the device-level sending cards

Prerequisites

The receiving card configuration files in .rcfgx or .rcfg format are ready. The cabinet must be a regular cabinet, and cannot be in triple or quadruple strip output mode.

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose **Tools > Controller Cabinet Configuration File Import.**
Step 2 Choose a communication port.

Step 3 Click **Add Configuration File**, select a configuration file, and click **Open**.

You can add configuration files for multiple receiving cards as needed. You can also delete and rename the configuration file.

Step 4 If you need to specify one or multiple sending cards, click **Advanced Configuration**. Select the desired sending cards in the displayed dialog box, and click **OK**. If you want to save the configuration files to all the connected sending cards, skip this step.

Step 5 After the settings are done, click **Save the Change to HW** to save the configuration files to the sending cards.

Step 6 After the files are saved successfully, click **OK**.

Step 7 If the renaming function is supported by device, you can rename the sending card as shown in Figure 8-15. If not supported, skip this step.
1. Select **Enable Naming**.
2. Choose a sending card and click **Rename**.
3. Enter the new name that contains only letters, and click **OK**.
4. Click **Save to HW**.

8.8 Video Control

Applications

Select an input source type for the video controller, and set the input, output and stitching.

Applicable Products

The NovaPro HD video controller

Prerequisites

None

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose **Tools > Video Control**.
Step 2 Choose a screen.

Step 3 Click an icon to select an input source.

Step 4 Perform any of the following operations as required to set the video control related parameters.

Set input and output
- Disable zooming
 You can set only the position of the output window.
- Enable zooming
 Select **Enable Zooming** to set the input intercepting position and size, as well as the output window position and size.
 The output window size must be smaller than or equal to the LED screen size.
- Full zooming
 Select **Enable Zooming** and **Full Zooming**. Output parameter settings are not required.
 The output image will be adjusted to the same size as the LED screen after this function is enabled.

Set stitching
- Select **Enable Stitching** to set the total number of pixels of the LED screen.
- Set the position and size of the area loaded by current device, and then set the output window position and size. If you want to display the image in pixel-to-pixel mode, please click **Pixel-to-pixel Auto Set**.
- Set the positions and sizes of the areas loaded by other devices, and then set the output window positions and sizes.
 The total size of the areas loaded by all devices must be the same as the total pixel number of the screen.
8.9 Module ID Settings

Applications

Set ID for the module containing a flash memory.

Applicable Products

The receiving cards that support module Flash or smart module

Prerequisites

The Flash arrangement is completed as described in 5.6 Setting Performance Parameters.

Related Information

Some modules do not support ID settings. For details, please contact NovaStar.

Operating Procedure

Step 1 On the menu bar, choose **User > Advanced Synchronous System User Login**. Enter the password and click **Login**.

 The default password is "admin".

Step 2 Choose **Tools > Module ID setting**.

Step 3 Click **Refresh** to view the module IDs.
Step 4 Type "admin" to access the ID setting pane.

Step 5 Select the ID generation method. Click Generate to set IDs for all the modules, or double click a single module and set its ID in the displayed dialog box, and then click OK.
- Prefix: Set the prefix of the module ID.
Sort: Select the sorting type for the module IDs.
- Type Z: Generate module IDs from left to right for all the rows from top to bottom. The ID format is "receiving card number-module number".
- Type N: Generate module IDs from top to bottom for all the columns from left to right. The ID format is "receiving card number-module number".
- No.: The ID format is "receiving card number-Flash number".
- By cabinet: Generate the IDs for all modules based on cabinets by Z type or N type, or number the modules by "sending card number-output port number-receiving card number-Flash number".

Step 6 After the settings are done, click Save to HW to save the configuration information to the hardware.

8.10 Sending Card Relay Settings

Applications

Set the status of the sending card relay to turn on or off the power of the receiving card.

Applicable Products

The KT8 sending card

Prerequisites

None

Related Information

When the relay is closed, the circuit is connected. When the relay is released, the circuit is disconnected.

Operating Procedure

Step 1 On the menu bar, choose User > Advanced Synchronous System User Login. Enter the password and click Login.

The default password is "admin".

Step 2 Choose Tools > More > Sending Card Relay.

Figure 8-20 Sending card relay

Step 3 Choose a communication port and a sending card.

Note: When the sending cards are cascaded, multiple sending cards are displayed in the list.

Step 4 Check the relay status and perform the following operations as required.

- Click Start to connect the circuit.
- Click Stop to disconnect the circuit.
9 Screen Maintenance

9.1 Hardware Program Update

Applications

Update the hardware programs for the receiving cards and sending cards.

Applicable Products

All receiving cards and sending cards

Prerequisites

The program update package is obtained.

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose User > Advanced Synchronous System User Login. Enter the password and click Login.

The default password is “admin”.

Step 2 Type “admin” to pop up the program loading window as shown in Figure 9-1.

Figure 9-1 Program loading
Step 3 Choose a communication port.
If you need to reconnect the sending card, click **Reconnect**.

Step 4 Specify the refreshing range, and click **Refresh** to view the current program version of the hardware.
- Refresh All: View the program versions of all sending cards and receiving cards.
- Refresh Specified: View the program versions of the specified sending cards and receiving cards.
If the module has an MCU, select **Refresh Module MCU** to view the MCU version.

Figure 9-2 Viewing program version

Step 5 Click **Browse**, select a program package, and click **OK**.

Step 6 Click **Advanced**, select the items to be updated, and click **OK**.

Figure 9-3 Advanced settings

Step 7 Click **Update**.

Step 8 Choose to update the programs of all receiving cards or the specified receiving card, and then click **OK**.
Step 9 After the programs are updated successfully, click **OK**.

Step 10 If the receiving card supports program readback, perform the following operations to save the receiving card program to your local drive; otherwise, skip this step.

1. Click **Read-back of receiving card program**.
2. Specify the receiving card, and click **OK**.
3. Select the file save path, and click **OK**.
4. After the settings are done, click **OK**.

9.2 Led Error Detection

Applications

Detect the damaged LED lights and locate them on the screen.

Applicable Products

- Use monitoring card for Led error detection: Applicable to the MRV320 receiving cards
- Use smart module for Led error detection: Applicable to the A4, A4s, A5, A5s, A7, A7s, A8, A8s, A9s, A10s Plus, XC200, XC100 and B4s receiving cards. The smart module Led error detection function is a customized function of the receiving cards.

Prerequisites

- The module driver chip must be MBI5037, MBI5036, MBI5030, DM13H, P2518, RFI3630, MBI5034, MBI5040, MBI5051, MBI5052, MBI5053, MBI5045, MBI5039 or MBI5152.
- If you want to use the Led error detection function of the monitoring card, the module driver chip must support 1/16 scan or below, and the MON300 monitoring card is required between the connection of module and the MRV320.
Related Information

None

Operating Procedure

Step 1 On the menu bar, choose **Tools > Led Error Detection**.

Figure 9-5 Led error detection

![Led error detection interface](image)

Step 2 Choose a communication port.

Step 3 Set Led error detection parameters.

- Detection Type: The detection types supported by the driver chip
- Threshold Voltage: The threshold voltage of the driver chip, which can be set based on the information provided by the screen manufacturer
- Current Gain: Select whether to enable the current gain function. Click **Change Setting** to adjust the current gain.
- Bi-Color LED Error: Select whether to detect only the red and green LED lights.

Step 4 Click **Conduct led error detection for full screen**, or select a cabinet on the screen topological diagram and click **Led error detection selection**.

Step 5 After the detection is done, click **OK**.
The number displayed on the topological diagram indicates the number of the faulty LED lights. Hover the mouse over the topological diagram to view the detailed Led error detection information.

Step 6 Double click a cabinet in the topological diagram to access the interface shown in Figure 9-7.

Figure 9-7 Result of the Led error detection for all the modules

Step 7 Select a red module, and select **Red A**, **Green**, **Blue** or **Red B** (virtual red) on the right to view the faulty LED lights which are shown in black.

9.3 Reset Run Time

Applications

Reset the receiving card run time displayed on each cabinet LCD.
Applicable Products

All receiving cards

Prerequisites

None

Related Information

The run time is stored in the receiving card and displayed on the cabinet LCD.

Operating Procedure

Step 1 On the menu bar, choose Tools > More > Reset Run Time.

Step 2 Choose a communication port and a screen.

Step 3 Click Reset.

9.4 Bit Error Detection

Applications

Test whether the communication of the receiving card Ethernet port is normal.

Applicable Products

All receiving cards

Prerequisites

None

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose Tools > More > Bit Error Detection.

Step 2 Click Manually as shown in Figure 9-9.
Step 3 If the communication is abnormal, perform any of the following operations as required. If the communication is normal, skip this step.

+ **View error details**

 Click the link in the **Error Details** column and view the detailed error information in the displayed dialog box.

+ **Locate display area**

 Click **Locate** to view the display area on the screen.

+ **Clear errors**

 Click **Clear Errors** to reset the error quantity to 0.

Step 4 (Optional) Select **Auto Refresh** and set the refreshing period.

9.5 Viewing Hardware Information

Applications

Set the current time of the hardware, and view the sending card SNs and hardware program version information.

Applicable Products

All receiving cards and sending cards

Prerequisites

None

Related Information

Currently only hour, minute and second can be set, but the date cannot be set.

Operating Procedure

Step 1 On the menu bar, choose **Settings > Hardware Information**.
Step 2 Choose a communication port.

After a communication port is selected, the current hardware time will be refreshed automatically. You can also click **Read** to manually update the hardware time.

Step 3 If you want to set the current time of the sending card to that of the computer, click **Set**; otherwise, skip this step.

Step 4 Click **Reread** to view the sending card SNs.

Step 5 Specify the refreshing range, and click **Refresh** to view the current program version of the hardware.

- **Refresh All**: View the program versions of all sending cards and receiving cards.
- **Refresh Specified**: View the program versions of the specified sending cards and receiving cards.

If the module has an MCU, select **Refresh Module MCU** to view the MCU version.
Figure 9-11 Viewing program version

- Time:
 - Current Time of Hardware: 2018/02/19 17:02:42

- Select the Communication Port:
 - Current Operation C:

- SN Number of Sending Card:
 - Serial Number: 1
 - SN Number: 1205-1069-8602-0086 (11-26-0-64)

- Hardware Program Version Information:
 - Sending Card MCU
 - V1.2.0.0 (Total/Version: 2018.09.01 PATCH-v1.2.0.0-STC)
 - Sending Card PFO-A
 - V1.2.0.0 (Total/Version: 2018.09.01 PATCH-v1.2.0.0-STC)
 - Receiving Card

- Information Console:
 - 2018/09/24 17:04:39 - Sending Card: Read sending card program version succeeded
 - 2018/09/24 17:04:39 - Sending Card: Output port 1 Receiving Card: Read receiving card MCU version succeeded
10 Plug-in

10.1 Test Tool

Applications

Use the test patterns to check whether the screen can display the image normally and locate the problems.

Applicable Products

All receiving cards and sending cards

Prerequisites

When the display window is large, it is recommended you use an extended display to display the test pattern for easier operation of the software.

Related Information

None

Operating Procedure

Step 1 Click or choose Plug-in > Test Tool on the menu bar.

Step 2 Click the Window tab to set the test pattern size according to the screen size, as well as set the test pattern position and set to show or hide the test pattern as shown in Table 10-1.

When the test pattern needs to be displayed on the extended display, adjust the X and Y values to move the test pattern to the extended display.

Figure 10-1 Setting window parameters

Step 3 Select the Pure Color, Gradual Change, Grid or Orientation tab to set the test pattern style.

Table 10-1 Setting test pattern

<table>
<thead>
<tr>
<th>Tab Name</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Color</td>
<td>Set a pure color test pattern.</td>
</tr>
<tr>
<td></td>
<td>• Select a color.</td>
</tr>
<tr>
<td></td>
<td>• Set the grayscale changing method.</td>
</tr>
<tr>
<td></td>
<td>The grayscale changing options include Manual and Automatic. When Automatic is selected, you can set the changing speed, as well as set to start or pause the changing.</td>
</tr>
<tr>
<td>Gradual Change</td>
<td>Set a gradient test pattern.</td>
</tr>
<tr>
<td></td>
<td>• Select a color.</td>
</tr>
<tr>
<td></td>
<td>• Select a grayscale level.</td>
</tr>
<tr>
<td></td>
<td>• Set the test pattern stretching times.</td>
</tr>
<tr>
<td>Tab Name</td>
<td>Function Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| **Grid** | Set a test pattern that has lines.
- Select a color.
- Set the line style.
- Set the grayscale level.
- Set the line moving speed.
Select **Grid Overlaying** and select another pattern to display the overlying grid effect. Click **Advanced Setting** to set the background color, line width and spacing, and the test patterns that can be used in blending measurement.
Click **Ageing** and the screen displays the pure red, green, blue and white in sequence, which is mainly used by the screen manufacturer. |
| **Orientation** | Set the test patterns displayed in the actual positions of the receiving cards and modules. The receiving card serial numbers, receiving card lines and module lines are displayed, which can be used to locate the specific receiving cards or modules.
- Set the module width and height.
- Set the module columns and rows in the receiving card.
- Set the colors for the receiving card serial numbers, module lines and receiving card lines.
- Set the background color or background image.
- Set the receiving card numbering direction. The options include **From Left to Right** and **From Right to Left**.
If the test pattern is not displayed, click the **Orientation** button to display it.
Click **Advanced Setting** to set the font size and font type for the receiving card serial number, starting row number, staring column number, as well as the widths of the module and receiving card lines. |

Figure 10-2 Setting orientation parameters

Note

Click the **Help** tab to view the descriptions of the shortcut keys used in **Test Tool**.

10.2 Calculator

Applications

Open the Windows calculator for users to do the necessary calculations.

Applicable Products

N/A

Prerequisites

None

www.novastar.tech
Related Information

None

Operating Procedure

On the menu bar, choose **Plug-in > Calculator** to open the Windows calculator.

10.3 External Program

Applications

Add the shortcut icons for the commonly-used programs to NovaLCT user interface.

Applicable Products

N/A

Prerequisites

None

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose **Plug-in > External Program**.

Figure 10-3 External program

Step 2 Click .

Figure 10-4 Adding external programs

Step 3 Select the program path and enter the command line parameter as required, and then click **OK**.
If the external program is successfully added, the shortcut icon of the program will be displayed in Figure 10-3.

Note

Select an external program icon and click to remove the program.

Step 4 Click **OK**.
11 Software Settings

11.1 Setting Main Window Starting Position

Applications

Set the coordinates of the top-left corner of the main window of NovaLCT on the desktop, and make the window display in the specified position when the software is started.

Applicable Products

N/A

Prerequisites

None

Related Information

None

Operating Procedure

Step 1 On the menu bar, choose **Settings > The Main Window Starting Position**.

![Figure 11-1 Setting starting position coordinates](image)

Step 2 Set the coordinates of the top-left corner of the main window on the desktop, and click **OK**.

After the settings are done, the main window moves to the specified position. When next time NovaLCT is started, the main window will be displayed in the target position.

11.2 Changing UI Language

Applications

Change the UI language for NovaLCT.

Applicable Products

N/A

Prerequisites

None

Related Information

Operating Procedure

On the menu bar, choose Language and select the target language from the sub-menu.

11.3 Viewing Help Documents and Updating Program Online

Applications

View the user manuals, update log and software information of the current version of NovaLCT, and perform online update for NovaLCT.

Applicable Products

N/A

Prerequisites

None

Related Information

When NovaLCT is started, an Online Update dialog box will pop up if the software is not the latest version. Click Update to update the software. If you want to update the program later, follow the subsequent operating procedure to perform online update.

Operating Procedure

Step 1 On the menu bar, choose Help.
Step 2 Perform the following operations as required.

+ View User Manuals
 Choose User Documents and select the desired user manual.

+ View Update Log
 Choose Update Log to view the update log in the displayed dialog box.

+ View Software Information
 Choose About to view the software version and copyright information in the displayed dialog box. If needed, click the link to visit the official website of NovaStar.

+ Update NovaLCT
 Choose Online Update to check whether a software update is available in the displayed dialog box. If there is a software update, click Update.
12 Troubleshooting

12.1 Failed to install NovaLCT of earlier versions

Problem

The installation of NovaLCT fails when the version to be installed is earlier than the current version.

Solution

Uninstall the current version, and then install the earlier one.

12.2 "No Screen" displayed in NovaLCT

Problem

“No Screen” is displayed in NovaLCT as shown in Figure 12-1.

Solution

- If the LED screen has been configured already, click and select the Screen Connection tab, and then click Read from HW to read the configurations from the LED screen.
- If the screen has not been configured yet, configure it first.

12.3 Permission error

Problem

After NovaLCT is installed on the system disk of the computer that runs Windows 8 or later version, some functions in NovaLCT cannot work normally.
Solution

Here, we use Windows 10 as an example to illustrate how to solve this problem.

Step 1 Right click the desktop shortcut of NovaLCT and select **Open file location**.

Step 2 Go back to the upper level of current file directory, that is, “Nova Star\NovaLCT”.

Step 3 Right click the **Bin** folder and select **Properties**.

Step 4 Select the **Security** tab.

Figure 12-2 Security

![Bin Properties dialog box](image)

Step 5 Check whether there is current user or **Everyone** in the **Group or user names** area.

- Yes: Go to **Step 11**.
- No: Go to **Step 6**.

Step 6 Click **Edit** to open the dialog box shown in **Figure 12-3**.
Step 7 Click **Add** to open the dialog box shown in **Figure 12-4**.

Step 8 Click **Advanced** to open the dialog box shown in **Figure 12-5**, and click **Find Now**.
Step 9 Select current user or **Everyone** in the search result, and click **OK**.

Step 10 Click **OK**.

Step 11 Select all for the **Allow** column and click **OK**.

Step 12 Click **OK** and close the properties dialog box.
12.4 Failed to connect colorimeter

Problem

The colorimeter connection fails when the colorimeter is used to automatically measure the original color space of the screen.

Solution

Step 1 Check whether the hardware connection of the colorimeter is normal.

When the colorimeter model is CS-100A, follow the subsequent descriptions to make sure the colorimeter auto mode is turned on.

Turning on auto mode: Set switch to ON while pressing the F button. When you see a C letter on the LCD, the auto mode is turned on, which is shown in Figure 12-7.

Figure 12-7 Setting CS-100A colorimeter

- Normal: Go to Step 2.
- Abnormal: Reconnect the colorimeter and make sure the colorimeter can work normally.

Step 2 Check whether the colorimeter model selected in NovaLCT is correct.

- Correct: Go to Step 3.
- Incorrect: Select the correct model.

Step 3 In NovaLCT, click **Connect** to reconnect the colorimeter.
13 FAQs

13.1 How do I set the required parameters in no sending card mode?

Question

The receiving card supports no sending card mode. When the hardware connection with no sending card is completed, how to set the required parameters?

![No sending card mode](image)

Answer

Step 1 Make sure the network card allows a data transmission rate of 1000 Mbps.

Step 2 On the taskbar, right click and choose **Detect Config**.

Step 3 Select Enable virtual controller and click OK.

![Enabling virtual controller](image)

Step 4 On the taskbar, right click and choose **Select Network Card**.

Step 5 Choose a network card and click **OK**.
13.2 How do I set the proxy when NovaLCT needs to access WAN network?

Question

When NovaLCT in LAN network needs to access WAN network, how to set the proxy?

Answer

Step 1 On the taskbar, right click and choose *System Setting*.

Step 2 Select *Enable Proxy*.

Step 3 Enter the proxy address and port.

Step 4 Click *Test Proxy*.

Step 5 After the test succeeds, click *Setting*.
Copyright © 2020 Xi'an NovaStar Tech Co., Ltd. All Rights Reserved.
No part of this document may be copied, reproduced, extracted or transmitted in any form or by any means without the prior written consent of Xi'an NovaStar Tech Co., Ltd.

Trademark
NOVASTAR is a trademark of Xi'an NovaStar Tech Co., Ltd.

Statement
You are welcome to use the product of Xi'an NovaStar Tech Co., Ltd. (hereinafter referred to as NovaStar). This document is intended to help you understand and use the product. For accuracy and reliability, NovaStar may make improvements and/or changes to this document at any time and without notice. If you experience any problems in use or have any suggestions, please contact us via contact info given in document. We will do our best to solve any issues, as well as evaluate and implement any suggestions.

Official website
www.novastar.tech

Technical support
support@novastar.tech